
PARALLEL PROGRAM DEBUGGING BASED ON DATA-REPLAY

Masao Maruyama1,2, Tomoaki Tsumura2 and Hiroshi Nakashima2

1 Department of Information and Computer Engineering 2 Department of Information and Computer Sciences
Kisarazu National College of Technology Toyohashi University of Technology

2-11-1 Kiyomidai-Higashi, Kisarazu, 1-1 Hibarigaoka, Tempaku,
Chiba 292-0041, Japan Toyohashi, Aichi 441-8580, Japan

{maruyama, tsumura, nakasima}@para.tutics.tut.ac.jp

Abstract

Nondeterministic nature of parallel programs is the major
difficulty in debugging. Order-replay, a technique to solve
this problem, is widely used because of its small overhead.
It has, however, several serious drawbacks: all processes of
the parallel program have to participate in replay even when
some of them are clearly not involved with the bug; and
the programmer cannot stop the process being debugged
at an arbitrary point. We adopt another method for de-
terministic replay, Data-replay, which logs contents of the
events rather than their order, and makes it possible to run
and stop each process independently. Data-replay is well
able to cooperate with reverse execution mechanisms. We
applied the Data-replay mechanism to MPI based parallel
programs. The result of our experiment with NAS Parallel
Benchmarks shows that our mechanism works at a prac-
tical cost. Logging communicated data incurs only 24 %
overhead while it accelerates replayed execution by 38 %,
both in average.
Key Words:parallel debugger, Data-replay, reverse execu-
tion, checkpointing

1 Introduction

Parallel programs are more difficult to debug than sequen-
tial programs due to their nondeterministic behavior.

Order-replay is a widely used solution for this prob-
lem, in which the order of nondeterministic events such as
wildcard receive events are saved in logging execution and
reproduced in subsequent replay executions. The technique
has advantages of small logging overhead both in data size
and time.

On the other hand, it has several serious drawbacks.
First, the user cannot stop parallel processes being de-
bugged in an arbitrary manner. For example, assume that
there are two communicating processes; the process Pa

sends a message M at the event Sa and Pb receives it at Rb.
Also assume that we found an erroneous behavior of Pb and
tried to detect its cause by inserting breakpoints in Pb. Then
we examined the behavior of Pb in detail to find that the real
cause is in the message M and try to know why and how Pa

generated the erroneous message. At this point, however,
we will realize that Pa has already completed its erroneous

procedure to generate M and has proceeded too ahead to
examine the cause of the error, because Order-replay ex-
ecution must obey the causality of the events Sa and Rb.
That is, it is impossible to stop Pa and Pb as we wish, at a
point before Sa and a point after Sb. It is possible to rerun
the program by Order-reply mechanism inserting a break-
point at a point before Sa, but such a overrun-and-rerun
debugging is seriously inefficient.

Another defect is that all processes of the parallel pro-
gram have to participate in replay execution even when
some of them are clearly not involved with the bug. The
processes irrelevant to the bug are not only obstructive to
debugging but also wasteful of expensive computing re-
source. Since a modern parallel computer may consist of
hundreds or thousands of processors, this problem becomes
more serious.

Thus we propose a debugging system based on Data-
replay, another technique for deterministic replay. Data-
replay is similar to Order-replay in logging/replay execu-
tion scheme, while it logs the contents of events such as
received messages instead of the event order, and replay is
performed on single process basis.

Data-replay allows the user to run an arbitrary subset
of the processes, and to stop any process at any point in-
dependently of the others. Moreover, it is well able to co-
operate with reverse execution mechanisms which provide
another powerful means for parallel program debugging.

The concept of Data-replay itself is not very novel
but had been considered as a poor predecessor (e.g. [1])
of Order-replay which LeBlanc first proposed as Instant
replay[2]. Then Data-replay has been almost ignored by
parallel debugging community because it has been believed
that data logging incurs an impractically large overhead.
Our primary contribution is to disabuse this impracticality
superstition with a real implementation for MPI programs
and its performance evaluation as discussed in this paper.
Another important contribution is to exhibit that Data-reply
is not only practical but also more efficient than Order-
replay especially when it is combined with reverse execu-
tion.

The rest of this paper is organized as follows. The
next section describes the concept of our Data-replay tech-
nique, and Section 3 presents its design and implementa-
tion. Section 4 shows the result of experiments to evaluate

Administrator
テキストボックス
This paper is author’s private version of the paper published as follows.Proc. 17th IASTED Intl. Conf. Parallel and Distributed Computing and Systems, pp.151-156, November 2005.

the system. After a brief discussion of related work in Sec-
tion 5, we conclude the paper in Section 6 showing our
future work.

2 Data-replay

As described above, Data-replay is a technique for deter-
ministic replay. Its important characteristics compared to
Order-replay are as follows.

Single process replay Replay is performed on single
process basis, because all the data of interprocess events
necessary for the execution of a process has been logged.
Therefore not all processes of the parallel program being
debugged have to be executed.

Once a data-log is collected on a full-scale parallel
computer which is still expensive, the user may perform
the rest of debugging process with fewer processors by only
replaying processes being suspected or of interest. More-
over, since the computer for logging and replay are not nec-
essarily same, the user may work the debugging process
on a machine, for example a PC of the user’s own, rather
than keeping the full-scale computer occupied. In contrast,
Order-replay requires all processes to run throughout the
debugging session and often on the full-scale or a suffi-
ciently large scale computer for reasonably quick execution
of the debugged program.

No restriction on setting breakpoints Since each pro-
cess is replayed independently, no restriction on setting
breakpoints is imposed by interprocess causal relationship.
The user may freely advance each process until it encoun-
ters an arbitrarily placed breakpoint. For example, we may
run the process Pa discussed in the previous section setting
a breakpoint at somewhere preceding the event Sa, after we
found the problem in the execution of Pb with a breakpoint
following Rb.

Well able to cooperate with reverse execution Reverse
execution is another powerful means for debugging be-
cause it allows us to rollback a debugging execution to a
point which we have already passed. However, the cost
for reverse execution of a parallel program is often inac-
ceptable because it usually requires occasional checkpoint-
ing which must be consistent throughout the whole parallel
system. When used with Data-replay, on the other hand,
we may use a simpler and faster checkpointing method be-
cause we need it only for a single process being debugged.

Moreover, an additional processor, e.g. one of dual-
processor PC, will effectively hide the cost of reverse exe-
cution by running another replaying execution with check-
pointing on it. When we are debugging a process occasion-
ally stopping its execution for examination, a copy of the
process runs on a shadow processor leaving checkpoints in
an appropriate frequency. Then, if we wish to go back to a
point past, the checkpoint most recent to the point should

be available by the shadow execution. Note that check-
points in future could also be available so that we may skip
a part of the debugging execution quickly. Also note that
this shadow checkpointing is impractical for Order-replay
because it requires another large scale environment equiv-
alent to that for foreground debugging.

Larger but reasonable overhead in logging execution
Data-replay takes larger cost than Order-replay due to its
larger logging data size. However, our claim is that the
overhead involved with data logging mainly for received
messages is not so large as to make Date-replay impracti-
cal.

Since communications between processes greatly af-
fect the performance of a program, its programmer should
try to reduce the size and frequency of the messages. At
the same time, the cost of communication via network is
comparable to that of write access to disks. Therefore, a
program with a reasonably small communication overhead
should be also reasonable to be executed with message data
logging, as discussed in Section 4 with supportive experi-
ment results.

3 Design and implementation

In this section, we describe the implementation of our Data-
replay and reverse execution mechanism, which work in
cooperation with each other. We applied the technique to
MPI, a widely used message passing library. The current
system works on MPICH-1.2.5.2 under Linux 2.4.7. Since
it is implemented exploiting the MPI profiler interface and
requires no modification of MPI’s internal code, it is easily
applicable to other MPI implementations.

3.1 Design overview

The system consists of three execution phases as shown in
Fig. 1. In the first logging execution, the log of each event
is recorded together with corresponding data (data log) so
that subsequent reply phases reproduce same computation
results without inter-process communication. The second
replay execution, which is optional and may be shadowed,
reproduces the result of one (or a few) of parallel pro-
cesses referring the data log, and takes checkpoints in an
appropriate frequency. Note that we separated execution
phases for logging and checkpointing, unlike conventional
systems such as Igor[3] and Recap[4] which perform both
in one execution. This separation makes it possible to hide
checkpointing overhead by shadowing, and to reduce the
possibility to distort the program behavior in logging exe-
cution by lessening its overhead. The third and subsequent
executions are for main work of debugging of one or a few
processes. In this phase, the execution is not only replayed
but also may be rolled back and forward to one of check-
points.

data logging
execution

data logging
execution

replay with
checkpointing

replay from
the checkpoint

data logs checkpoint

Figure 1. The execution phases.

3.2 Data-replay mechanism

In Data-replay, all irreproducible information must be
recorded within logging execution in advance. In general,
a process by itself can not reproduce the results of exter-
nal events. Irreproducible information varies with where
replay mechanism is instrumented. For instance, if it is un-
der MPI layer, only the events making communication with
other processes are irreproducible. Such an implementation
records relatively small amount of log, but will depend on
MPI library and/or underlying operating system.

We place our Data-replay layer between applications
and MPI library, as shown in Fig. 2, in order to keep it
independent of any particular MPI implementation and op-
erating system.

In logging executions, our Data-replay library catches
every MPI function call, then calls it and saves returned
value from MPI and memory changes to log file before re-
turning to the caller.

No actual MPI call is made in replay, but instead
Data-replay library returns the data recorded at the corre-
sponding event in the logging execution. In other words, it
simulates MPI’s behavior.

The system is implemented only using MPI profiling
interface, and does not requires modification of either the
application or MPI library.

3.3 Logged data

The system records information for analysis of event rela-
tion including message communicators, message tags and
data types in addition to minimum data needed to Data-
replay.

For example, following data are recorded for the func-
tion MPI Recv.

• return value from the function
• MPI status
• contents of receive buffer
• source of the message
• message tag
• communicator

Only the first three are necessary for Data-replay and

MPI_func()

PMPI_func()

Data log

Logging execution

Application

MPI library

Data-replay layer

MPI_func()

PMPI_func()

Data log

Replay execution

Application

MPI library

Data-replay layer

Figure 2. Data logging/replay mechanism.

the others only for the analysis of event relations. For
MPI Send,

• return value from the function
• destination of the message
• message tag
• communicator

are recorded. Note that message body is not logged here.
Some MPI functions require special handling as fol-

lows.

Nonblocking receive MPI Wait does not return the ad-
dress of the corresponding receive buffer, which is spec-
ified indirectly in its argument named request-handle. In
order to locate the buffer, our system maintains a table to
map a request-handle to the receive buffer corresponding
to it. When a request-handle is created for a receive, it
is registered in the table with its buffer address, and is re-
ferred when the completion of the receive is confirmed by
MPI wait.

Communicator creation Although information on
the set of processes belonging to a communicator is
unnecessary for Data-replay mechanism, it is helpful
to the debugger users. On the invocation of functions
creating a new communicator such as MPI Comm create
and MPI Comm split, our system records the handle and
the IDs of the processes (ranks in MPI COMM WORLD)
belonging to it.

Table 1. Specification of the computer for the experiments.

Node processor PentiumIII 866MHz
Memory 512MB
Network 1000Base-T
Number of Nodes 16(NPB)/43(OG)
OS Linux 2.4.7

Since the additional information includes Order-
replay log, a debugger based on our system may provide
functions for analysis of event relationship and for execu-
tion control in a manner equivalent to or more flexible than
Order-replay based systems. For example, the debugger
can detect the point where a process is blocked waiting for
a message in original execution, and stop the process un-
til the sender process reaches the corresponding transmis-
sion if its user wishes an in-step or synchronous debugging.
Such a debugging involving two or more processes is not
inconsistent with our single process basis replay mecha-
nism. Rather, our mechanism allows a debugger and its
user to choose the synchronous debugging of bugs incurred
by a miscoordination of processes, or the asynchronous one
to concentrate one suspected process.

3.4 Reverse execution

Our system provide checkpointing and rollback facility for
single process. In cooperation with Data-replay, it allows
individual process to restart from an arbitrary point by
rolling its execution back (or forward) to the checkpoint
most recent to the point and then replaying the execution to
the point.

We adopted “incremental checkpointing” in order to
reduce the overhead. For data segment and heap, each
checkpoint only includes the pages modified since the pre-
ceding checkpoint, while the stack is always fully saved.

The checkpoint interval is specified at run-time. The
system polls the system timer whenever an MPI function
is called, and takes the checkpoint if time is up. Asyn-
chronous checkpointing with timer interrupt is also possi-
ble, but our claim is that checkpoints synchronous to MPI
events are more useful as rollback points because they are
easily located in the event graph of the program being de-
bugged.

In order to minimize the cost of checkpoint restoring,
we perform the restore operation of incrementally saved
checkpoints in reverse order. In other words, we first re-
store the pages saved in the target checkpoint, then those in
the preceding checkpoint which are not yet restored, and
repeat this procedure until the first checkpoint is exam-
ined. Thus the cost of restoring is almost proportional to
the number of pages modified until the target checkpoint,
rather than those saved in the target and predecessor check-
points. Finally, the stack is restored from the target check-
point.

4 Experiments

In this section we describe the experiments and perfor-
mance study of our system. We implemented our Data-
reply system and also an Order-replay for comparison. We
measured the performance of both systems with seven pro-
grams from the NAS parallel benchmarks (NPB v2.3)[3],
BT, CG, EP, IS, LU, MG and SP, and an Othello (aka. Re-
versi) playing program (OG) written by ourselves as an
example of nondeterministic programs. All the programs
are parallelized with MPI library, which is MPICH-1.2.5.2
in our experiments. As described in Section 3, each MPI
function call is trapped by our mechanism through the MPI
profiler interface in the logging and replay executions.

All experiments were performed on a cluster shown
in Table 1. For NPB programs, problem class is B and the
number of processes is 16. OG consists of 43 processes for
parallel α-β search of the game tree of 6-degree and 10-
level deep, whose topmost three-level nodes corresponds
to parallel processes. All the performance numbers shown
in this section are the averages of ten measurement runs.

4.1 Execution time and log amount

Table 2 shows the time of the logging and replay execu-
tions of two replay techniques, together with that of the
base execution without logging nor replaying. The num-
bers shown in the table are for rank-0 processes of NPB
programs, while rank-7, the leftmost leaf node process, is
chosen for OG. These processes perform computation as
much as or more than the other processes. The amount of
logged data, which is recorded into local storages, is given
in Table 3.

Execution time Execution time of Data-logging relative
to the base execution is in the range of 1.00 (OG) to 1.68
(IS), and the average is 1.24, while the average overhead
of Order-logging is 1 %. Although Data-replay technique
is inferior to Order-replay for logging overhead as antici-
pated, we evaluated that 20 to 30 % overhead is still practi-
cal and acceptable in most cases.

Even if the overhead is unacceptably large, for ex-
ample, to run programs always with logging or to avoid
the probe effect, our Data-replay is still usable by com-
bining with Order-replay. That is, we may run a program
with Order-logging in daily work and, when we find a
buggy behavior, run the program with Data-logging using
Order-replay mechanism. This additional logging execu-
tion needs some cost of course, but more payout will be
earned by the subsequent debugging run as discussed be-
low.

Replay time of Data-replay is in the range of 0.30 (IS)
to 0.96 (EP), and 0.62 in average. Order replay, on the
other hand, takes almost same time as the base execution.
The reason of the speedup in Data-replay is that the process
does not need to be blocked in the communication and syn-
chronization events such as MPI Recv and MPI Barrier.

Table 2. Execution time of benchmark programs.

Base Data log Data replay Order log Order replay
BT 459.6(1.00) 487.4(1.06) 398.1(0.87) 457.3(0.99) 457.3(0.99)
CG 211.2(1.00) 337.2(1.60) 66.1(0.31) 228.0(1.08) 230.6(1.09)
EP 70.4(1.00) 71.4(1.01) 67.6(0.96) 70.1(1.00) 70.1(1.00)
IS 20.4(1.00) 34.3(1.68) 6.1(0.30) 20.5(1.00) 20.4(1.00)
LU 240.1(1.00) 264.0(1.10) 182.3(0.76) 240.5(1.00) 241.0(1.00)
MG 23.4(1.00) 32.5(1.39) 10.2(0.44) 23.8(1.02) 24.2(1.03)
SP 414.2(1.00) 456.7(1.10) 282.9(0.68) 416.3(1.01) 416.5(1.01)
OG 290.7(1.00) 291.3(1.00) 190.9(0.66) 291.8(1.00) 291.8(1.00)
Average (1.00) (1.24) (0.62) (1.01) (1.02)

Table 3. Amount of logs of benchmark programs.

of events Data log[MB] Order log[MB]
BT 36436 506.6 0.46
CG 69928 850.4 0.96
EP 11 0.0 0.00
IS 42 88.9 0.00
LU 102561 153.4 1.37
MG 13627 45.7 0.19
SP 65418 907.2 0.84
OG 2823 0.2 0.20

Table 4. Amount of logs per second.

BT CG EP IS LU MG SP OG
1.10 4.03 0.00 4.36 0.64 1.95 2.19 0.00

Our claim is that the replay cost is more significant
than that of logging, because locating the cause of a bug
usually requires to replay the execution repeatedly. For ex-
ample, when a user needs to repeat halfway replay execu-
tions n times to fix a bug, the total execution time of Data-
replay Td(n) and Order-replay To(n) in average case of Ta-
ble 2 are Td(n) = 1.24+0.62n/2, To(n) = 1.01+1.02n/2
respectively. That is, the Data-logging overhead is al-
most recovered by the first replay, and subsequent replays
achieve a significantly large time-cost reduction steadily.

Log amount Data-replay produced up to 907MB (SP) of
log, while Order-replay log is 1.4MB (LU) or less. Al-
though the Data-log size is much larger than the Order-log,
as anticipated again, the amount less than 1GB causes no
problem in modern computing systems. Another justifica-
tion of the log size is given from the growth rate of Data-log
shown in Table 4. This result exhibits that one-hour run of
a program of the highest logging rate (IS) only consumes
15GB disk space approximately, which is about 20 % or
less of the local disk space of modern PC clusters.

Table 5. Execution results of checkpointing.

CP size[MB] # of CPs time[s](normalized)
BT 753.3 11.5 501.5(1.09)
CG 43.5 10.9 72.6(0.34)
EP 1.2 1.0 67.6(0.96)
IS 68.5 3.0 7.8(0.38)
LU 114.1 10.0 191.2(0.80)
MG 222.5 10.0 34.0(1.45)
SP 233.4 10.5 313.5(0.76)
OG 0.4 9.0 191.0(0.66)

4.2 Checkpointing and restoring

Next we measured the time and data size of checkpoint-
ing. In this experiment, the process of rank-0 (for NPBs)
or rank-7 (OG) was replayed taking checkpoints. Check-
pointing interval was set to 1/10 of the total execution time
of each program. Table 5 shows the amount of checkpoint
data, execution time and the number of checkpoints actu-
ally taken 1.

An important observation obtained from the result is
that the total size of checkpoints is comparable with that
of Data-log and thus it is feasible too. More importantly,
the execution time is still shorter, much shorter in CG and
IS, than the base execution except for BT and MG. There-
fore, we may conclude that the checkpointing for reverse
(and forward-skipping) execution becomes a practical de-
bugging aid when it is combined with Data-replay tech-
nique.

Finally, we measured the performance of restoring.
After taking 11 checkpoints for each process by adjusting
intervals, we restored the execution states targeting the first,
sixth and eleventh checkpoints. As shown in Table 6, later
targets consume longer restoring time because they need
more checkpoint traversals. The growth rate, however, is
quite small because the restoring of each page is taken only

1As stated in Section 3.3, our checkpointing synchronous to MPI
events will not produce checkpoints in a given interval if a program has
a few events as in EP and IS. Also note that the fractions in the number
of checkpoints are the results of timing variance of events in ten measure-
ment runs.

Table 6. Execution time for rollback(in seconds).

1st CP 6th CP 11th CP
BT 5.42 5.86 6.03
CG 5.78 5.90 6.00
LU 5.45 5.77 5.86
MG 2.40 2.55 2.71
SP 5.41 5.72 5.86
OG 0.10 0.10 0.12

once regardless of the number of checkpoints as discussed
in Section 3.4. For example, the restoring operation for the
eleventh checkpoint of BT takes 6.03 seconds which is only
about 10 % longer than that for the first one. This result,
together with the fact that the absolute cost of restoring is
less than 10 %, strongly supports that a roll-back or roll-
forward operation in parallel program debugging is a means
not only powerful but also efficient.

5 Related work

BugNet[1] is an early debugging system for message pass-
ing parallel programs based on checkpointing and Data-
replay technique.

Igor[4] and Recap[5] are also examples of the de-
bugger using checkpointing. Igor uses incremental check-
pointing technique, while Recap has a mechanism with
suspended processes for checkpointing. Unfortunately,
computers of those days did not have enough capabil-
ity for logging the entire message contents and/or process
states. For example, Recap produces 1MB/s of log data on
VAX11/780 whose disk space was indicated in MB. There-
fore, it was the consensus that content-based replay is only
used for tracing I/O and for tracing the result of certain sys-
tem calls such as gettimeofday() due to its cost, as Ronsse
stated in [6].

Order-replay was first proposed by LeBlanc as In-
stant Replay[2]. There are many parallel debugging sys-
tems based on similar techniques. Most of them make it a
point to solve irreproducibility but deprecate efficiency in
debugging session.

Netzer proposed an uncoordinated checkpointing
technique[7] in which content of a message is logged only
when it may cause “Domino effect” (according to their ex-
periments, 1-10 % of messages). Although it reduces the
logging cost, however, it still has serious drawbacks that (1)
almost all processes participate in replay, (2) it is slower in
replay than our method, and (3) its implementation strongly
depends on the communication layer.

6 Conclusion

In this paper we proposed a debugging technique based on
Data-replay and checkpointing. Since the Data-replay does
not require all the parallel processes to participate in the

replay execution, a program may be debugged on a smaller
scale system in more flexible manner than debuggers based
on Order-replay.

We implemented it for MPI and evaluated its perfor-
mance comparing with Order-replay. The experiment re-
sults exhibit not only the practicality of the Data-replay
with respect to its temporal and spatial cost but also the
performance superiority to Order-replay in the replay phase
which is usually repeated in debugging. We also exhibit
the efficiency of a checkpoint-based rollback mechanism
which provides another powerful means of debugging.

We are currently developing a parallel debugger with
our Data-replay as the basis of a flexible execution con-
trol of processes. In order to provide the users with means
of handling a huge events and processes, the debugger is
planned to include a event/process manipulation language
which is our another important work for parallel debug-
ging.

Acknowledgments

This research work is partly supported by Japan Science
and Technology Agency as a CREST research program en-
titled “Mega-Scale Computing Based on Low-Power Tech-
nology and Workload Modeling.”

References

[1] R. Curtis and L. Wittie. Bugnet: A debugging system
for parallel programming environments. In Proc. 3rd
Intl. Conf. Distributed Computing Systems, pages 394–
399, 1982.

[2] T. J. LeBlanc and J. M. Mellor-Crummey. Debug-
gin parallel programs with instant replay. IEEE Trans.
Comp, C–36(4):471–482, 1987.

[3] D. H. Bailey et al. The nas parallel benchmarks. Intl.
J. Supercomputer Applications, 5(3):63–73, 1991.

[4] S. I. Feldman and C. B. Brown. Igor: A system for pro-
gram debugging via reversible execution. ACM SIG-
PLAN Notices, 24(1):112–123, 1989.

[5] D. Z. Pan and M. A. Linton. Supporting reverse exe-
cution of parallel programs. ACM SIGPLAN Notices,
24(1):124–129, 1989.

[6] M. Ronsse et al. Execution replay and debugging.
In proc. 4th Intl. Workshop on Automated Debug-
ging(AADEBUG 2000), pages 5–18, 2000.

[7] R. H. B. Netzer and J. Xu. Adaptive message logging
for incremental replay of message-passing programs.
In Proc. the 1993 ACM/IEEE conference on Supercom-
puting, pages 840–849, 1993.

