Speculatively Granting Conflicting Accesses on Hardware Transactional Memory

Tomoki Tajimi*, Yuki Futamase*,

Thr 1

Tx.Y

Masaki Hayashi*,

will not violate Isolation.

BEGIN TRANSACTION(0);

COMMIT TRANSACTION(0);

count++;

switch(op){

case 0:

case 1:

case 2:

case 3:

}

Ryota Shioya⁺, Masahiro Goshima[‡], Tomoaki Tsumura^{*}

*Nagoya Institute of Technology, [†]The University of Tokyo, [‡]National Institute of Informatics

Hardware Transactional Memory (HTM)

Conflicting Accesses that can be Granted After the *last-touch* of a shared variable.

accesses to the variable by other concurrent Tx

enqueue right();

dequeue_right();

enqueue left();

dequeue_left();

Simplified code of Deque

last-touch

of "count

never accessed

again

until its commit

break;

break;

break;

break;

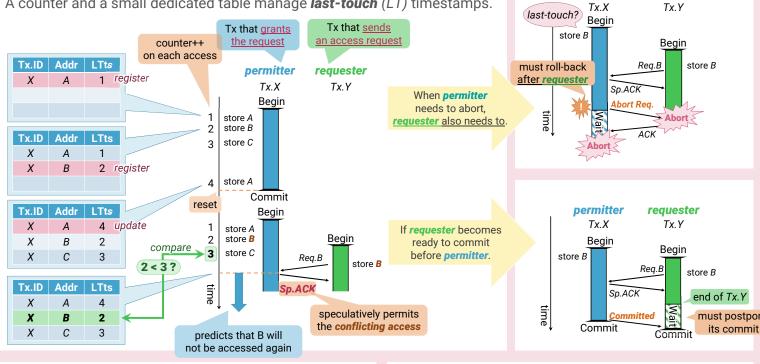
requester

permitter

- Transactions (Tx) are speculatively Thr.0 executed in parallel. Tx.X
- HTM guarantees two properties for Tx.

> Atomicity

- Each Tx must not be executed partially.
- Isolation
 - The result of concurrently executed Tx must be same as sequentially executed.

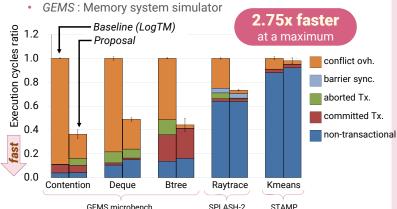


Accesses that can violate them are detected as conflicting accesses

Granting a Conflicting Access

• A counter and a small dedicated table manage *last-touch* (*LT*) timestamps.

time



Performance Evaluation

Simulation (16 threads)

Simics : Full system simulator (SPARC-V9, Solaris10)

Hardware Cost

- Dedicated table
 - 42bit per one address

Total: 77.1KByte

(per one thread)

max # of access destination addresses per Tx: 15,018

can be reduced by managing

only limited addresses

Each thread manages its permitter and requester 16bit + 16bit (16 threads)

Future Work

- Examine the trade-off between storage capacity and performance
- Evaluation with a large variety of programs
- Detailed area cost estimation