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Transactional memory (TM) [1] is a promising mechanism for im-
proving both of productivity and performance of parallel processing
programs on shared-memory systems such as multi-core proces-
sors. It can be complementary and/or alternative to traditional
lock-based mechanisms that are awkward and intractable for pro-
grammers. Hardware transactional memories (HTMs), hardware
implementations of TM, are now widely installed to the several
latest processors, such as IBM zEC12, Power8, and Intel Haswell.
Programmers define critical sections as transactions, and the trans-
actions can be speculatively executed in parallel by HTMs, while
traditional lock-based systems completely serialize them. HTMs
dynamically detect access conflicts on shared variables between
transactions and cancel speculative execution of transactions. Be-
cause the canceled execution comes to nothing and causes some
performance overhead for rolling back the transaction execution,
how to avoid and reduce access conflicts is very important for the
performance of HTMs. Many studies [2, 5, 8–11] have been con-
ducted on improving HTM performance, but some type of programs
still suffer many access conflicts and large performance overhead,
and they should be relieved.

Transactions must guarantee several properties including Atom-
icity and Isolation, and access requests that may violate them are
generally denied by HTMs. However, we found that some of the
requests can be granted without violating Isolation, and this can im-
prove the HTM performance. On HTM, execution of a transaction
is naturally speculative, and our proposal boosts its speculative-
ness by speculatively permitting some accesses that are judged as
conflicting accesses.

In this presentation, we aim to make the following contributions:

(1) We carefully examine a typical benchmark program and
disclose that some access requests can be granted without
violating Isolation.
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(2) We propose a novel transaction control for speculatively
granting some access requests that may violate Isolation,
and canceling the accesses when the speculation fails.

Specifically, with traditional HTM systems, an access request
on a shared variable is denied for Isolation if the variable has been
already modified by another concurrent transaction. However, by
examining some typical benchmark programs, we found that if the
transaction never accesses the variable again until its commit, the
request can be granted, and the access can be permitted without
violating Isolation.We propose some extensions for HTM to support
such novel access control between transactions.

To exploit this idea, the last-touch on each shared variable in
each transaction should be managed and maintained. We installed
a counter and a small dedicated table to each processor core for this.
On each memory access (load/store), the transaction increments
the counter value and registers the tuple of the transaction ID, the
accessed address, and the counter value on the dedicated table.
Receiving an access request on a shared variable, the transaction
judges whether its own modification on the variable is completed
or not by comparing the registered last-touch and currently issued
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Figure 1: How to permit a conflicting access
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memory access count. If it is predicted that the modification is
completed, the transaction speculatively grants the access request.
In the example shown in Figure 1, Tx.X (the transaction labeled
with ID ‘X ’) grants the access request on B from Tx.Y (at t4), because
Tx.X has already issued three memory accesses when receiving the
request and it is remembered that the second memory access in
Tx.X is the last-touch on B.

A transaction that sends an access request (requester) is spec-
ulatively permitted its conflicting access on the presupposition
that the transaction that grants the request (permitter) has com-
pleted its modification on the shared variable, will commit, and
the modified value of the shared variable will be persistent. If this
speculation fails, or the permitter accesses the variable again or
aborts, the execution of the requester must be canceled for Iso-
lation. We also designed the control for this. When a ‘permitter’
touches a shared variable after the predicted last-touch or the per-
mitter aborts, it needs to notify it to the requester and the requester
aborts. In contrast, the requester must postpone its commit until
the corresponding permitter commits even if it instantly can. There
is another required control for roll-back. As explained, when the
permitter aborts, the corresponding requester also should abort, and
the should roll-back together. In that case, the state that should be
restored is one of before the beginning of not requester but permit-
ter. Hence, the requester should roll-back first, and after then, the
permitter should roll-back.
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Figure 2: The normalized total sum of execution cycles

We evaluated the novel access control by using a full-system
simulator WindRiver Simics [3] in conjunction with customized
memory simulators build on Wisconsin GEMS [4]. We used some
workloads from GEMS microbench suite [4], SPLASH-2 benchmark
suite [12], and STAMP benchmark suite [6]. The evaluation result
shown in Figure 2 indicates that the speculative access control can
reduce the total execution cycles by 63.3% at a maximum and 38.8%
on average, compared with a traditional HTM implementation
LogTM [7]. Especially, the conflict overhead is largely reduced and
this mainly contributes to the performance improvement.
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