
An Analysis and a Solution of False Conflicts
for Hardware Transactional Memory

Yuki FUTAMASE*, Masaki HAYASHI*, Tomoki TAJIMI*,
Ryota SHIOYA†, Masahiro GOSHIMA‡ and Tomoaki TSUMURA*

*Nagoya Institute of Technology
Gokiso, Showa, Nagoya, Japan

Email: camp@matlab.nitech.ac.jp

†The University of Tokyo
Hongo 7-3-1, Bunkyo, Tokyo, Japan

Email: shioya@ci.i.u-tokyo.ac.jp

‡National Institute of Informatics
Hitotsubashi 2-1-2, Chiyoda, Tokyo, Japan

Email: goshima@nii.ac.jp

Abstract—Transactional memory is a promising paradigm for
shared-memory parallel programming model. On TMs, trans-
actions are executed speculatively in parallel as long as any
access conflict is not detected. On general hardware transactional
memories (HTMs), conflicts degrade the performance because of
the overhead for retrying transactions, and it is important to
avoid conflicts. HTM generally detects access conflicts on cache-
line granularity, and this causes accesses on different variables
that are on a cache line to be falsely detected as conflicting
accesses. In this paper, we analyze how frequently such false
conflicts occur and what type of coding can cause them. As
a result of the analysis, we confirmed that the false conflicts
account for 27.4% on average and even 99.9% at a maximum of
all detected conflicts. We also propose a light-weight fine-grained
conflict detection mechanism and show that it can reduce the
execution cycles by 17.7% on average and 36.5% at a maximum.

I. INTRODUCTION

Along with the spread of multi-core processors, parallel
programming utilizing thread level parallelism has become
increasingly important. In shared memory parallel program-
ming model, lock-based mechanisms have often been used for
arbitrating access to shared resources. However, lock-based
synchronization may cause deadlocks, and they lead to poor
scalability.

Transactional Memory (TM) [1] has been proposed as an
attractive alternative to lock-based synchronization. On TM-
managed systems, multiple transactions running on separate
threads can speculatively access the shared memory in parallel,
as long as any access conflict is not detected. TM saves both
new and old values when a transaction modifies a value in the
shared memory (version management). TM also keeps tracks
of each memory access, checking whether each requested
data has been accessed by another transaction or not (conflict
detection). Hardware Transactional Memories (HTMs) [2],
[3], hardware implementations of TM, offer high performance
since they implement the mechanisms of version management
and conflict detection in hardware. HTMs are now widely
implemented in the several latest processors, such as IBM
zEC12, Power8, and Intel Haswell.

Since HTM generally detects conflicts on cache-line granu-
larity, accesses to different variables on a cache-line are falsely
detected as conflicting accesses (false conflict). In this paper,

we analyze the frequency of such false conflicts on HTM and
clarify what type of coding can cause false conflicts. We also
propose a fine-grained conflict detection with smaller hardware
implementation cost than our previous work[4].

In summary, we will make the following contributions:
1) We analyze the frequency of false conflicts and disclose

that they account for 27.4% on average and 99.9% at
maximum of all detected conflicts (Sec. III).

2) We also disclose that 3.0% of the false conflicts are on
non-transactional accesses to non-shared variables that
essentially can never cause access conflicts (Sec. III).

3) We propose a light-weight fine-grained conflict detection
mechanism (Sec. IV) and show that the execution cycles
can be reduced by 17.7% on average and 36.5% at a
maximum with the mechanism (Sec. V).

II. CONFLICT DETECTION ON GENERAL HTM
A. Hardware Transactional Memory

With transactional memory (TM), transactions encapsulat-
ing critical sections can run in parallel as long as any memory
access conflict is not detected. Developers can roughly define
coarse-grained transactions unlike with traditional lock-based
mechanisms and can achieve good performance owing to the
transaction parallelism. TM guarantees the following proper-
ties for transactions by monitoring memory accesses:

Atomicity: Each transaction must be executed completely
and must not be executed partially.

Isolation: The result of the concurrent execution of trans-
actions must be the same as that of sequential
execution.

A situation where memory accesses that can violate one
of the properties are detected is called access conflict. To be
free from a conflict, one of the transactions that are concerned
with the conflict should discard its execution, or abort. When
a transaction is aborted, the old values that are updated by
the transaction must be restored, and the state of the memory
and the register file should be rolled back to their state of
before the transaction started. Hardware transactional memory
(HTM) has hardware support for the conflict detection and
version management mechanisms, and costs low latency for
transaction control.

tsumura
テキストボックス
This is the accepted manuscript of a paper published inProc. 25th IEEE Int'l Conf. on Electronics Circuits and Systems (ICECS 2018)Copyright (C) 2018 IEEE



Fig. 1. How accesses to different variables cause conflict

B. Cache-Line Grained Conflict Detection on HTM

Many HTM implementations, such as IBM zEC12 [5],
adopt additional bit fields on each cache line for managing
transactional reads/writes and detecting conflict; they called
R/W-bit. Other implementations, such as Bulk [6] and LogTM-
SE [7], adopt filters called signatures to unitarily manage
transactional reads/writes on cache lines. In both cases, con-
flicts are detected on cache-line granularity, and some memory
accesses can be falsely detected as conflicts.

Figure 1 shows a brief example of how a false conflict is
detected. Now assume that the members of array a[] on the
shared memory are concurrently accessed by two transactions
running on Core1 and Core2. Firstly, when Core1’s transaction
updates the value of a[0], Core1 caches a[0-3] on a cache-
line (t2-i) and sets the W-bit of the line (t2-ii). After then,
if Core2’s transaction tries to update the value of a[2],
Core2 sends a coherence request for sharing the cache line
that contains a[2] (t3-i). Because the W-bit of the line has
been set, Core2 receives NACK as the response to its request,
or Core2’s access on a[2] is falsely detected as a conflict
(t3-ii). As shown in this example, false conflicts are due to
cache-line grained conflict detection.

III. ANALYSIS OF FALSE CONFLICTS

False conflicts lead to futile abort and retry of transactions
and degrade the performance of HTM. To solve this, we
firstly analyze the frequency of false conflicts, their impact on
performance, and what type of codes will cause false conflicts.

A. Experimental Setup

We used LogTM-SE implemented on a full-system
execution-driven functional simulator Simics [8] in conjunc-
tion with customized memory simulators built on GEMS [9]
for analysis. The detailed configuration is summarized in
TABLE I. We used a total of eight programs to be evaluated
from GEMS microbench, SPLASH-2 [10], and STAMP [11].
Each benchmark program was executed with 16 threads.

B. Survey

The results with the following two HTM configurations are
shown in Fig. 2 and TABLE II, and the results of (I) are
normalized to the corresponding results of (B) in Fig. 2. We
implemented an ideal configuration (I), which has as many

TABLE I
SIMULATOR CONFIGURATION

Processor SPARC V9
#cores 32 cores
clock 4 GHz
issue width/order single/in-order
non-memory IPC 1

D1 cache 32 KBytes
ways 4 ways
latency 3 cycles

D2 cache 8 MBytes
ways 8 ways
latency 20 cycles

Memory 4 GBytes
latency 450 cycles

Interconnect network latency 14 cycles

Fig. 2. Normalized execution cycles

Read/Write bits per cache line as the number of words in a
cache line and never falsely detects conflicts.

(B) Baseline: LogTM-SE [7]
(I) Ideal: can manage transactional reads/writes on vari-

able (or word) granularity and completely suppress
false conflicts.

The legend in Fig. 2 shows the breakdown items of the
total execution cycles. They indicate the cycles out of trans-
actions (Non trans), the cycles in the committed transactions
(Good trans), the penalty overhead caused by conflicts (Con-
flict ovh), and the barrier synchronization cycles (Barrier).

TABLE II shows the false conflict rate with (B). We define
the false conflict rate as the ratio of the number of NACKs
caused by false conflicts to the total number of NACKs.

The result shows that false conflicts account for 99.9% at
a maximum and 27.4% on average of the total conflicts, and
fine-grained conflict detection can reduce the execution cycles
by 87.9% at a maximum and 24.7% on average.

C. Detailed Examination

Prioqueue and SortedList particularly show high false
conflict rates, and the number of execution cycles of (S)
is significantly lower than (B). These workloads have trans-
actions that frequently access multiple member variables in
a structure defined as a global variable. Accessing these
variables placed in the adjacent memory space causes false



TABLE II
FALSE CONFLICT RATE

workload Btree Contention Prioqueue SortedList
rate 0.6% 0.0% 45.8% 99.9%

workload Cholesky Radiosity Kmeans Vacation
rate 3.7% 66.5% 0.3% 29.8%

1 for (i = 0; i < numOperation; i++) {
2 action = generates_random_value();
3 switch (action) {
4 case MAKE_RESERVATION: {
5 BEGIN_TRANSACTION(0);
6 for(n = 0; n < numQuery; n++){
7 types[n] = generates_random_value();
8 }
9 ... /* make reservation of car/room/flight */

10 COMMIT_TRANSACTION(0);
11 break;
12 }
13 ... /* other cases */
14 }
15 }

Fig. 3. A transaction in Vacation

conflicts. In such a case, false conflicts can be avoided by
appropriately padding between variables in the structure, but
performance may decline due to reduced cache efficiency.

Since Vacation has a distinguishing feature that Non trans
cycles are largely different between (B) and (I), we examine
it in detail. It is a workload that emulates an online booking
system. It has three transactions, and the transaction shown in
Fig. 3 is most frequently executed; accounts for 98% of the
total count of transaction execution. The transaction manages
reservation entries, and the entry size is 16 bytes. Hence, four
entries at most can be placed in a cache line and accesses to
them in the transaction lead to false conflicts.

In addition, the difference of Non trans indicates that
execution outside transactions can also suffer conflicts even
though it is not transactional. We investigated the details and
discovered that it is due to an array of a structure; each thread
uses only one element of the array indexed by its thread ID.
Accesses to the elements never bring conflicts, but a coarsely
defined transaction includes an access on an element and this
can stall a non-transactional access on another element that is
located in the same cache line.

Since such a coding style is not strange and array elements
are generally located sequentially in the shared memory, many
programs can suffer this type of false conflict. Although
developers can avoid it by utilizing padding with minute
attention, the productivity that HTM offers will be severely
detracted. Hence, we will propose a solution for false conflicts
in the following.

IV. FINE-GRAINED CONFLICT DETECTION

A. Implementation

We evaluated an ideal performance described in Sec. III
by using a pair of R- and W-bit per word. It is a naive
implementation, but costs large area overhead. Cache lines

Fig. 4. Fine-grained conflict detection

where false conflicts occur should be limited, and scaling R/W-
bits for all lines is futile.

Inspired by LogTM-SE [7] and BFGTS [12], we propose an
implementation that adopts Bloom filter [13] for fine-grained
conflict detection and can manage only cache lines where
false conflicts occur with small hardware extension. We install
the following additional hardware units to each core for the
implementation:

• C-buf (conflict address buffer): temporarily manages
cache line addresses where conflicts are observed in the
current running transaction.

• C-bit (conflict bit): a flag installed to each cache line; it
indicates whether a conflict has occurred on the line.

• Fine-R/W-sig. (Fine-grained Read/Write signature):
Bloom filters that manage accessed addresses for
fine-grained conflict detection.

B. Execution Model

The proposed mechanism firstly manages the cache lines
where conflicts have occurred in past and adopts fine-grained
conflict detection only on such cache lines. We explain the
execution model by using Fig. 4 where how the same example
shown in Fig. 1 is managed by the proposed mechanism.

1) Managing Conflicted Cache Lines: Now assume that
Core1 receives an access request for a[2] after updating
a[0] as same as the example described in Sec. II-B. In that
case, Core1 checks not only R/W-bit but also C-bit (t1-i/ii).
Since the value ‘0’ of C-bit means no conflict has occurred
on the line, Core1 normally detects conflict on cache line
granularity and returns NACK as usual, and the line address
is registered on C-buf (t2).

After then, when committing the transaction, Core1 sets C-
bits of the cache lines registered on C-buf (t3) for adopting
fine-grained conflict detection to the lines.

2) Conflict Detection using Bloom Filter: Assume a situ-
ation where Core1 executes the transaction and receives an
access request for a[2] after updating a[0] again. When
updating a[0], Core1 knows the cache line has a conflict



Fig. 5. Normalized execution cycles with the proposed mechanism.

in past by checking C-bit of the line. Hence, Core1 registers
the address of a[0] to Fine-W-sig. for fine-grained conflict
detection on this line (t4-i/ii/iii). Receiving a request for a[2],
Core1 checks the C-bit (t5). Because it is set, Core1 tries fine-
grained conflict detection by searching the requested address
of a[2] from Fine-R/W-sig. (t6). It is not registered on them,
no conflict is detected and the request can be granted. In this
way, accesses to different variables in the same cache line can
avoid false conflict.

C. Area Cost Estimation

The naive implementation we adopted for evaluating an
ideal performance in Sec. III-B uses a pair of R/W-bits per
word. The simulator configuration has 32 kB D1 cache and its
line size is 64 B. Hence, required additional memory cell for
the naive implementation can be calculated as (32kB/64B)×
2× (64B/32bit) = 2kB.

In contrast, only two 1024 bit length Bloom filters and
additional small logic are required for our proposal. This
means that the proposed implementation only costs one eighth
memory cells compared with the naive implementation, and it
will be energy efficient.

V. EXPERIMENTAL EVALUATION

We implemented the mechanism described in Sec. IV and
evaluated it with the same setup as that presented in Sec. III-A.
Figure 5 shows the results with the following three HTM
configurations. It shows that the execution cycles are reduced
by 36.5% at a maximum and 17.7% on average with (P).

(B) Baseline (reproduced from Fig. 2)
(I) Ideal (reproduced from Fig. 2)
(P) Proposal
The mechanism we proposed largely reduced the execution

cycles of the programs that show high false conflict rate in
TABLE II, and the performance is comparable to an ideal
configuration (I) even though its area overhead is remarkably
smaller than that of (I).

Only with SortedList, the performance is inferior to (I). It is
caused by many false positives on the Bloom filter because we
used a very simple hash function that consists of only bit shift
and XOR to suppress the latency of hash value calculation.

It is known that false positives can be drastically reduced
by increasing the number of hash functions. Hence, the perfor-
mance will reach to the ideal by designing more appropriate
function and/or increasing the number of functions.

VI. CONCLUSION

In this paper, we analyzed the frequency and performance
impact of false conflicts on HTM and discussed what type of
coding is apt to cause such conflicts, by examining typical
benchmark programs.

We disclosed that false conflicts account for a large percent-
age of all detected conflicts, and some of them are detected on
even non-transactional memory accesses outside transactions.
We also proposed an implementation of fine-grain conflict
detection and introduced that it can reduce the execution cycles
by 35.5% at a maximum and 17.7% on average. Our future
work includes reducing false positives of the Bloom filter by
using multiple hash functions and optimizing them.

ACKNOWLEDGMENT

This work was partially supported by JSPS KAKENHI
Grant Numbers JP17H01711, JP17H01764, and JP17K19971.

REFERENCES

[1] M. Herlihy et al., “Transactional Memory: Architectural Support for
Lock-Free Data Structures,” in Proc. 20th Int’l Symp. on Computer
Architecture (ISCA’93), May. 1993, pp. 289–300.

[2] T. Knight, “An architecture for mostly functional languages,” in Proc.
ACM Conference on LISP and Functional Programming (LFP’86), 1986,
pp. 105–112.

[3] L. Hammond et al., “Transactional Memory Coherence and Con-
sistency,” in Proc. 31st Annual Int’l Symp. Computer Architecture
(ISCA’04), Jun. 2004, pp. 102–113.

[4] S. Horiba, H. Asai, M. Eto, T. Tsumura, and H. Matsuo, “Fine-Grain
Conflict Management for Hardware Transactional Memory Systems
Employing Eager Version Management,” in Proc. 4th Workshop on
Parallel Programming and Run-Time Management Techniques for Many-
core Architectures (PARMA2013), held in conjunction with HiPEAC’13,
Jan. 2013.

[5] C. K. Shum, F. Busaba, and C. Jacobi, “IBM zEC12: The Third-
Generation High-Frequency Mainframe Microprocessor,” IEEE Micro,
vol. 33, no. 2, pp. 38–47, Mar. 2013.

[6] L. Ceze, J. Tuck, J. Torrellas, and C. Cascaval, “Bulk Disambiguation
of Speculative Threads in Multiprocessors,” in Proc. 33rd Annual Int’l
Symp. on Computer Architecture (ISCA’06), Jun. 2006, pp. 227–238.

[7] L. Yen et al., “LogTM-SE: Decoupling Hardware Transactional Memory
from Caches,” in Proc. 13th Annual Int’l Symp. on High Performance
Computer Architecture (HPCA-13), Feb. 2007, pp. 261–272.

[8] P. S. Magnusson et al., “Simics: A Full System Simulation Platform,”
Computer, vol. 35, no. 2, pp. 50–58, Feb. 2002.

[9] M. M. K. Martin et al., “Multifacet’s General Execution-driven Mul-
tiprocessor Simulator (GEMS) Toolset,” ACM SIGARCH Computer
Architecture News, vol. 33, no. 4, pp. 92–99, Sep. 2005.

[10] S. C. Woo et al., “The SPLASH-2 Programs: Characterization and
Methodological Considerations,” in Proc. 22nd Int’l. Symp. on Computer
Architecture (ISCA’95), 1995, pp. 24–36.

[11] C. C. Minh et al., “STAMP: Stanford Transactional Applications for
Multi-Processing,” in Proc. IEEE Int’l Symp. on Workload Characteri-
zation (IISWC’08), Sep. 2008.

[12] G. Blake, R. G. Dreslinski, and T. Mudge, “Bloom Filter Guided
Transaction Scheduling,” in Proc. 17th Int’l Conf. on High-Performance
Computer Architecture (HPCA-17), 2011, pp. 75–86.

[13] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.
[Online]. Available: http://doi.acm.org/10.1145/362686.362692




