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Abstract—Multi-core and SIMD-supported processors have
been popular and now can be highly utilized for image/video
processing. However, to exploit theoretical performance of such
a platform, developers must write programs, considering detailed
specifications of the platform. We have proposed a video process-
ing library RaVioli for solving this issue. RaVioli conceals two
resolutions, frame rate and number of pixels, from developers
for simplifying image/video processing programming. However,
image/video processing programs could be written with more
abstract syntax than that RaVioli provides, and image/video
processing has much more potential parallelism than that RaVioli
can exploit. To solve these problems, in this paper, we propose
a multi-grain parallel video processing environment composed
of a highly abstracted programming language and a dedicated
compiler. The environment makes image/video processing pro-
gramming easier and achieves higher performance.

I. INTRODUCTION

Multimedia applications are now widely in demand, as
many systems such as mobile computers and home infor-
mation appliances have gained popularity. Such applications
generally have data parallelism. Hence, SIMD instruction
sets which most processors now support can be utilized,
and have been constantly extended. Simultaneously, multi-
core processors which also can exploit data parallelism in
multimedia applications have become popular. The platforms
which support SIMD and/or multi-thread on multi-core have
much potential for high-performance image/video processing.
However, to exploit theoretical performance of such a plat-
form, developers must write and tune up programs, considering
detailed specifications of the platform.
To address this problem, we have proposed a high-level

video processing library RaVioli (Resolution-Adaptable Video
and Image Operating Library) [1], [2], [3]. RaVioli conceals
pixel rate and frame rate from developers, and can exclude the
concept of resolutions from image/video processing program-
ming. With this library, developers can write image/video pro-
cessing programs more intuitively. RaVioli also partly supports
auto-parallelization on some platforms. However, there still is
room for improvement on RaVioli, from two points of view.
One is that image/video processing programs could be written
with more abstract syntax than that RaVioli supports. The
other is that image/video processing has much more potential
parallelism than that RaVioli can exploit.
These two issues are in the relationship of trade-off, because

high abstraction of programming leads to large abstraction

overhead, and minute performance tuning generally requires
detailed designation of processing scheduling and/or hardware
resource utilization. Through the development of RaVioli, we
found that it is difficult to enhance both of programmability
and performance by only a high-level library.
In this paper, we propose a novel video processing en-

vironment that provides both of a highly abstracted pro-
gramming language and high performance with multi-grain
auto-parallelization. The video processing environment also
provides a dedicated compiler, that bridges the gap between
programmability and performance by generating highly par-
allelized assembly codes automatically from the highly ab-
stracted language.

II. RELATED WORK

Many libraries such as OpenIP [4], OpenCV [5] have been
developed for image/video processing [6], [7]. These libraries
provide high-level writeability for image/video processing and
they can parallelize image processing programs supported by
other parallelization libraries such as OpenMP. However, in or-
der to write parallel programs with these libraries, developers
are required to have knowledge of not only image processing
but also parallelization.
Some programming languages for image processing have

also been proposed [8], [9], [10], [11]. A loop-less image
processing language [9], for example, allows developers to
implement image processing for embedded devices without
any knowledge about the processors or memory architectures.
Using this language, developers can write programs with
some special iteration operators instead of loops. However,
developers still have to consider resolutions even with this
language.
Halide [10], [11] is the most well-known and promising

programming framework specialized for image processing. In
the aspects of the performance, readability, and writeability,
Halide is highly appreciated compared with several previous
image processing frameworks [12], and much work inspired by
Halide is being conducted now [12], [13], [14], [15], [16], [17],
[18]. Halide can support various platforms such as general-
purpose multi-core processors, GPUs, and mobile processors.
In Halide programs, the core algorithm for image processing
and parallelization procedure are decoupled, and developers
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Fig. 1. Design concept overview. RaVioli and Halide still have room for
improvement of programmability and performance. Highly abstracted video
processing language and a dedicated compiler for the language that we
propose can bridge the gap between programmability and performance.

can try several scheduling for parallelization without modi-
fying the core algorithm for image processing. Halide also
supports auto-parallelization for image processing programs.
However, Halide does not natively support video processing.
Hence, developers must write a video processing program as
a combination of image processing for all frames, and control
processing schedule for the frames.

The concept of Halide is very similar to that of RaVi-
oli, and faces the same problem with RaVioli as shown
in Fig. 1. Specifically, Halide has not yet coped with both
high programmability and high performance. For example
in Halide syntax, conditional statements must be described
with some built-in functions. This is far from intuitive for
developers because such a syntax is completely different from
the common syntax using if-then-else statements. On the other
hand, performance tuning with Halide is not well simplified.
Developers still should select and use a suitable function for
the processing from among many built-in parallel scheduling
functions that Halide provides. In addition, developers should
set appropriate parallelizing configuration parameters for the
scheduling function. These are difficult for typical program-
mers.

In this paper, we propose a multi-grain parallel video
processing environment. The environment can achieve high
performance image/video processing with more simple syntax
than the existing programming frameworks mentioned above
provide. The environment also provides a dedicated compiler
which generates multi-grain parallelized programs automati-
cally. As a result, the environment makes image/video pro-
cessing programming easier and achieves higher performance.
We will compare the performance of the framework with
Halide, and discuss advantages and disadvantages of them in
Section VI.

(a) A typical program. (b) A RaVioli program.

Fig. 2. Overview of digital image processing. In typical programs, kernel
processing to a component, such as a pixel, is enclosed in nested loops. In
RaVioli programs, a component function is passed to one of the higher-order
methods that an image instance has.

III. OVERVIEW OF RAVIOLI

Generally, loop iterations are heavily used in image/video
processing programs. When converting a color image to
grayscale, for example, each pixel will be converted to
grayscale in the innermost iteration, and it is repeated for every
pixel by nested loops. In typical image processing programs,
developers have to know the height and the width of the image
for defining the number of iterations of loops as shown in
Fig. 2(a).
On the other hand, with RaVioli, an image is encapsulated in

an RV Image instance, and this repetitious processing for all
pixels is applied by RaVioli automatically. Hence, developers
should only write a routine for a component of the image
and pass it to a higher-order method as shown in Fig. 2(b).
In Fig. 2(b), GrayScale() is a routine defined by a developer.
What developers should do are defining a function which
processes one pixel and passing the function to one of the
image instance’s public methods. We call this type of function
a component function. In this example, the component function
GrayScale() is passed to procPix() which is defined as a
higher-order method of the RV Image instance. It applies the
function passed as its argument to all pixels in the RV Image
instance one after another. Not only procPix(), RaVioli also
provides some higher-order methods for several processing
patterns [2]. This framework allows developers to be released
from resolutions and the number of iterations. With RaVioli, it
is easy to achieve auto-parallelization because the process for
a component of an image is defined as the function. Therefore,
RaVioli can support various platforms such as general-purpose
multi-core processors, Cell/B.E., or CUDA GPUs [3].
However, there still is room for improvement on RaVioli,

from two points of view. One is that image/video processing
programs could be written with more abstract syntax than that
RaVioli provides. When developers use RaVioli, developers
still have to select the appropriate higher-order method for
the processing pattern of applications. The other is that im-



age/video processing has much more potential parallelism than
that RaVioli can exploit. RaVioli can support various parallel
processing platforms, but RaVioli cannot support multi-grain
parallelization such as the vectorization, the tiling and the
pipelining. RaVioli also causes the overhead for calling func-
tions because processes for the component are defined as the
function and they are repeatedly applied to each component.

IV. A MULTI-GRAIN PARALLEL VIDEO PROCESSING

ENVIRONMENT

In this section, we describe overview of the image/video
processing environment we propose, and introduce specifica-
tion of the image/video processing programming language.
Then, we describe the multi-grain parallelization which is
utilized in the environment.

A. Overview of the Image/Video Processing Environment

In this paper, we propose a multi-grain parallel video
processing environment. The environment is composed of a
programming language which provides higher abstraction of
video processing than RaVioli and a compiler which generates
a highly parallelized assembly code automatically. The video
processing language is designed as an extension of the image
processing language we have proposed [19]. The language
provides an universal syntax for writing several processing
patterns in the same format, unlike RaVioli.
The environment also provides a dedicated compiler for

the language. The compiler can generate assembly programs
which utilize multi-grain parallelism and exploit vectorization,
tiling, and pipelining. As a result, with the environment,
developers can highly derive the performance of the platform
without any knowledge about the platforms and parallelization.

B. Highly Abstracted Video Processing Programming Lan-
guage

The language provides a programming paradigm which
conceals number of pixels and frame rate, like RaVioli.
In addition, unlike RaVioli, developers can write programs
without considering processing patterns, by using the universal
syntax provided by this language.
1) Image Processing Function: Figure 3 shows a grayscale

program written in the language. In this program, the video
processing (line 7–11) and the image processing, or the
processing for each frame (line 1–6) are written separately.
Now, we explain how developers write image processing
programs in the language. First, a function name should be
defined. Each function definition should have input/output
variables next to the function name with “>.” In this program,
the function Grayscale which has the input/output variable
img1. To make image/video processing programming easier,
the language provides some types: pixel for a pixel, box for
a partial-image, array for an array of scalar values, and so
on. If a variable is defined with no type declaration, it is
regarded as a scholar variable. Developers can define the type
of a variable by indicating between “(” and “)” just before the
variable name, as shown in Fig. 3.

1 (image)img1 > Grayscale > img1{
2 (pixel)p1@img1{
3 ave = (p1.R + p1.G + p1.B) / 3;
4 p1.{R, G, B} = {ave, ave, ave};
5 }
6 }
7

8 (stream)st1 > StreamGray > st1{
9 (image)frame1@st1{
10 frame1 > Grayscale > frame1;
11 }
12 }

Fig. 3. Definitions of an image processing function ‘Grayscale’ and a video
processing function ‘StreamGray.’

1 (stream)in1 > main > (stream)out1{
2 in1 > Binary | Edge > out1;
3 }

Fig. 4. Definition of a main function. Multiple processing functions can
be concatenated by “|,” and treated as multiple stages for pipelining by the
dedicated compiler.

Now, we explain how developers define the body of an
image processing function (line 2–5). An unit variable being
processed locates at the left side of “@,” and an area variable
where the unit processing is applied locates at the right side
of “@.” Namely, “(pixel)p1@img1” at line 2 in the figure
means that “the pixel type variable p1 is the component unit
of the image img1, and the process for the unit p1 is defined
in the following block.” Therefore, the process for p1, which
is defined at line 3–4, is applied to all pixels in img1. At line
3, the average of each value of RGB of p1 is calculated, and
at line 4, the average is assigned to each of RGB of p1, and
p1 is converted into grayscale.
2) Video Processing Function: In video processing pro-

grams, a function for video processing need to be defined, in
addition to the component function of the image processing
for each frame. The variable type stream is provided for
defining a video stream. Now, we explain how to write video
processing programs in the language, by using the sample
program shown in Fig. 3. As mentioned in Section IV-B1,
Grayscale defined at line 1–6 is the function for converting
an image into grayscale. Besides, the function StreamGray for
video processing is defined at line 7–11, with a stream variable
st1 as its input/output. In this function, the process for st1 is
defined. The expression “(image)frame1@st1” at line 8 means
that “the image type variable frame1 is the component unit of
the stream st1, and the process for the unit frame1 is defined
in the following block.” In the definition block of StreamGray,
Grayscale defined at line 1-6 is applied to all frames in the
st1 (line 9). In this way, video processing programs can be
written in as similar form as image processing programs.
3) Main Function: A program needs a main function in

addition to image/video processing functions. As shown at
line 1 in Fig. 4, a function defined with the name “main” is
assumed as the main function, and will be called at the begin-



Fig. 5. Pipelined execution. Multiple processing functions defined as pipeline
stages are overlapped by using multiple threads on cores. Load imbalance
perceived in this figure is approximately resolved by the dedicated compiler
as we describe in Section V-C and Fig. 9, later.

ning of the program. Input and output variables for the main
function can be defined in the same format as image/video
processing functions. The input/output variables are mapped to
input/output videos respectively. In the case of image process-
ing programs, the type for input/output variables of the main
function should be image. Here, an image/video application
is commonly composed of several processing phases. The
symbol “|” can be used to enumerate the processing phases
when writing such an application. In Fig. 4, the functions
Binary and Edge are applied to each frame of the input stream
in1 one after another, and the stream out1 is output as the
result. Besides, the output of the function located before “|”
is mapped to the input of the function located after “|.” In this
way, the language allows developers to write video processing
programs which is composed of multiple phases, and supports
various types of video processing.

C. Multi-Grain Parallelization

The video processing framework also provides a dedicated
compiler, which generates a highly parallelized assembly
program automatically from a program written in the language
explained in Section IV-B. For the parallelization, we focus on
two types of parallelism in image/video processing.
One is data parallelism. A data component in an image, such

as a pixel or a pixel set, and another data component have data
parallelism. Common processing on the components can be
applied in parallel, while it is applied sequentially by loops
in naive implementation with procedural languages. Such a
component can be easily detected in the proposed language, as
a left side variable of “@.” Hence, the compiler automatically
vectorize the processes on such components utilizing SIMD
instructions.
In addition, tiling, or block decomposition, is also effective

for data parallelism in image processing. When a processor
is equipped with multiple cores, the compiler automatically
divide an image into multiple blocks, and parallelize the image
processing by running multiple threads on the multiple cores.
Tiling can be used cooperatively with vectorization.
The other is task parallelism. Processing on different frames

Fig. 6. Overview of compilation. The dedicated compiler firstly applies multi-
threading and generates thread-parallelized C++ code. Secondly, it applies data
parallelization and generates assembly code filled with SIMD instructions.
The compiler applies multi-threading by using block decomposition for image
processing, and pipelining for video processing.

in a video stream has task parallelism. In addition, image/video
processing applications often have several processing phases,
and such phases can be indicated by using “|” in the proposed
language, as mentioned in Section IV-B3. For such applica-
tions, pipelining the processing phases will be effective. For
example, a typical straight line detection program is composed
of four processing phases: binarization, edge detection, hough
transform, and inverse hough transform. Hence, the program
can be pipelined as shown in Fig. 5, by assuming the four
processing phases as pipeline stages and mapping each stage
to an individual thread on multi-core processors. In this figure,
a number labeled at upper left of each processing stage
shows a frame ID. As same as tiling, pipelining also can be
used cooperatively with vectorization. Consequently, the video
processing environment can exploit multi-grain parallelism in
video processing applications.

V. IMPLEMENTATION OF THE COMPILER

We implement a compiler which generates a highly paral-
lelized assembly code from a program written in the proposed
language. In this section, we describe the overview of the
compiler. Then, we describe how the compiler generates an
assembly code.

A. Overview of the Compiler

The compiler generates a highly parallelized assembly code
through two steps as shown in Fig. 6. In the first step, the
compiler applies tiling and pipelining to the program written
in the proposed language. Specifically, the compiler translates
only the outside of the kernel loops in image/video processing
programs into C++ codes. Tiling and pipelining are imple-
mented with POSIX threads. Then, the compiler translates the
generated C++ program into an assembly program.
After that, in the second step, the compiler fills the inside

of the kernel loops in the generated assembly codes with
instructions which correspond to the processing for data units.
At the time, the compiler uses SIMD instructions if possible,



1 int main(int argc,char∗ argv[]){
2 // Read an imput image
3 Image∗ in = new Image();
4 IOHandler io;
5 io.Input(argv[1], in);
6 // Generate as many threads as the number of processor cores
7 for(int i=0; i<THRNUM; i++){
8 if(pthread create(&thread[i], NULL, Grayscale, (void∗)in) != 0)
9 exit(1);
10 }
11 // Join threads
12 for(int i=0; i<THRNUM; i++)
13 pthread join(thread[i], NULL);
14 // Write an output image
15 io.Output(argv[2], in);
16 return 0;
17 }

Fig. 7. An example of a main function generated through the first step.

for vectorizing the program. In the following sections, we ex-
plain how the compiler generates highly parallelized assembly
programs.

B. Tiling with Block Decomposition

First, the compiler analyzes the main function of a pro-
gram written in the proposed language, and generates a main
function in C++. Now, we explain how to generate the main
function. Figure 7 illustrates an example code of a generated
main function. The compiler generates codes for reading/writ-
ing images from/to input/output argument variables of the
main function in the program written in the proposed language
(line 3–5, 15). Then, in order to create threads each of which
being allocated to individual processor core, the compiler
inserts pthread create() (line 7-10). At this time, the compiler
creates as many threads as the number of cores. Incidentally,
the number is acquired by profiling machine information in
advance. Then, the compiler assigns each thread to a function
by indicating it as an argument of the pthread create(). In order
to join threads which are allocated to processor cores after
functions are executed, the compiler inserts pthread join()
(line 12–13).
After that, the compiler analyzes the component function of

the program written in the proposed language, and generates
a corresponding C++ function. Now, we explain how the C++
version of the component function Grayscale shown in Fig. 3
is generated. Here, Fig. 8 shows the generated code. Initially,
the compiler generates codes for acquiring the width and
the height of the input image (line 3–4). Then, in order to
calculate which decomposed block of the input image should
be assigned to each thread, the compiler generates a function
for acquiring thread ID (line 6). If the number of threads is
N , the value of ID can be from 0 to N − 1. In addition,
the compiler decides which block of an input image should
be assigned to each thread by using the ID, the width of the
image, the height of the image, and the number of threads (line
8–11). The image is horizontally divided considering spatial
locality of reference, and each thread will access continuous

1 void∗ Grayscale(void∗ img1){
2 Image ∗img = static cast<Image ∗>(img1);
3 int width = img−>getWidth();
4 int height = img−>getHeight();
5 // Acquire a thread ID
6 int mythreadID = getmyThrID();
7 // Calculate a region where the process is applied
8 int sj = (height / THRNUM) ∗ mythreadID;
9 int ej = sj + (height / THRNUM);
10 if(mythreadID == THRNUM−1)
11 ej = height;
12 // Kernel loop
13 for(int j = sj; j < ej; j++){
14 for(int i = 0; i < width; i += CALC WIDTH){
15 asm(”nop”);
16 }
17 }
18 return NULL;
19 }

Fig. 8. Grayscale function generated through the first step.

memory area. At last, the compiler inserts kernel loops for
processing each pixel in the image. In this step, the compiler
inserts only a “nop” instruction inside the kernel loops by
using inline assembly. This “nop” instruction works as a
marker for finding where the kernel processing corresponds to
the component function should be inserted in the second step
later. Here, CALC WIDTH, which is used in reinitialization of
the kernel loop, shows the number of data which are processed
in parallel by one SIMD instruction. As mentioned earlier, in
the image processing program, the compiler generates codes
only for tiling at the first step.
Now, if some shared variables are accessed in the com-

ponent function, the accesses on the variables need exclusive
control. In the program written in the proposed language, there
is no data dependency between the processing on different
components or data units even when some shared variables
are accessed, because the processing order on the components
is not defined unlike in the programs using loop structures.
Hence, if some shared variables are detected in a component
function, the compiler defines a thread-local variable for
each shared variable. Then, the compiler generates codes for
processing in parallel with reading and writing data on these
thread-local variables, and generates codes for sequentially
merging the results which are processed by each thread.

C. Pipelining

As tiling is applied to image processing programs, pipelin-
ing is applied to video processing programs by the compiler
at the first step. First, the compiler analyzes the main function
and the component function of a video processing program
written in the proposed language, and generates a C++ main
function. The compiler generates codes for reading/writing
video from/to input/output argument variables of the main
function. Second, the compiler examines whether the com-
ponent function is defined as a series of multiple functions
concatenated by “|.” If it is composed of multiple functions,
the compiler judges that those functions can be pipelined.



Fig. 9. An example of a pipelined execution flow. The number of threads
binded to each processing stage is automatically adjusted according to the
stage load.

Then, the compiler generates codes for calculating how many
threads should be mapped to each function, based on the ratio
of the processing load of the functions. After generating the
main function, the compiler analyzes the component function
for the image processing on each frame of the input video,
and generates the corresponding C++ function.
We show how the execution flow of a video processing is

pipelined by the compiler, using an example shown in Fig. 9.
Now assume that this video processing program is composed
of two processing stages: Binary and Edge. First of all, the two
processing stages for the first frame is sequentially executed,
and the time required for each stage is measured (Binary: t1−
t0, Edge: t2 − t1). By using this result, how many threads
should be assigned to each function (or stage) is calculated
for balancing each processing load. Specifically, the ratio of
execution time for the processing stages is calculated, and the
number of threads which should be assigned to each stage
is calculated from the ratio. In Fig. 9, for example, the total
number of threads is four, and the ratio of time of Binary
to time of Edge is 1 : 3. Thereby, the number of threads
which are assigned for Binary is calculated as one and for
Edge is three. Then, threads are created and assigned to each
processing stage based on the calculated result. In this way, the
second and the succeeding frames are processed in a pipelined
manner as shown in Fig. 9.

D. Vectorization

In the second step, the compiler fill the codes inside the
kernel loop, where a “nop” instruction is provisionally located
in the first step. The program is vectorized in this second step
with SIMD instructions. First, the compiler analyzes the as-
sembly program generated through the first step, and searches
“nop” instructions to detect kernel loops. After detecting a
kernel loop, the compiler generates a code for filling inside
the kernel loop. Figure 10 shows a part of filling code for
the kernel of Grayscale shown in Fig. 3. In the filling code,
the addresses of the pixels, which are being processed in
the kernel, are stored into general registers. The pixels are
components of the input image of the component function
where the kernel loop locates. Then, the pixel data indicated
by the addresses are moved from the memory into SIMD
registers. Finally, the pixel data gathered into the SIMD

1 :
2 .L0:
3 vmovdqu (%r8), %xmm0
4 vmovdqu (%r9), %xmm1
5 vmovdqu (%r10), %xmm2
6 vpsllw $8, %xmm0, %xmm0
7 vpsllw $8, %xmm1, %xmm1
8 vpsllw $8, %xmm2, %xmm2
9 vpmulhuw .ONETHIRD(%rip), %xmm0, %xmm0
10 vpmulhuw .ONETHIRD(%rip), %xmm1, %xmm1
11 vpmulhuw .ONETHIRD(%rip), %xmm2, %xmm2
12 vpaddw %xmm0, %xmm1, %xmm0
13 vpaddw %xmm0, %xmm2, %xmm0
14 vmovdqu %xmm0, (%r8)
15 vmovdqu %xmm0, (%r9)
16 vmovdqu %xmm0, (%r10)
17 addl $8, %eax
18 cmpl −12(%rbp), %eax
19 jne .L0
20 addl $1, %eax
21 cmpl −8(%rbp), %eax
22 jne .L0
23 :

Fig. 10. A part of filling code for the kernel of Grayscale.

TABLE I
EVALUATION ENVIRONMENT

OS CentOS 6.4
CPU Intel Core i7-4770

Clocks 3.4 GHz
Memory 16 GB
Cores 8

SIMD Register Size 256 bits
Compiler gcc 4.8
Compile options -O3

registers are processed by SIMD instructions, and the results
are moved back to the memory.

VI. EVALUATION

We evaluated the proposed video processing environment
with some image/video processing programs. In this section,
we compare the performance and writeability between the
proposed video processing environment, RaVioli, and Halide.

A. Performance of Image Processing

We evaluated execution time of some image processing
programs. The evaluation environment is shown in TABLE I.
For this evaluation, we used a grayscale program, an emboss
filter program, and an edge detection program. The spatial
resolution of input images is XGA (1, 024 × 768 pixels).
The evaluation result is shown in Fig. 11. The execution

time of each program is illustrated with four bars. The leftmost
bar is the result of the program written in C++. The second is
with RaVioli, the third is with Halide, and the rightmost is the
result with the proposed video processing framework. Each
bar is normalized to the execution time of C++ programs.
As shown in the figure, the programs with the proposed

environment outperforms 9.1-fold on average and 16.4-fold at
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Fig. 11. Execution time of image processing programs. Halide and RaVioli
achieve better performance than C++, with their auto-parallelization mecha-
nism. However, they are inferior to the proposed framework because of their
abstraction overhead.
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Fig. 12. Execution time of a video processing program. Halide does not
natively support video processing, and its result is not shown. RaVioli provides
good writeability also on video processing programs, but its abstraction
overhead restricts its performance. The result with the proposed framework
shows the performance advantage with pipelining, and the importance of
processing scheduling across frames is proved.

a maximum against C++ programs. In addition compared with
Halide, it outperforms 4.2-fold on average and 9.3-fold at a
maximum.
With the proposed video processing environment, the execu-

tion time of all programs are reduced compared with RaVioli.
Among the programs, the performance of the edge detection
is especially improved. The program has multiple component
functions, and large overhead of calling function costs with
RaVioli. On the other hand with the proposed environment, the
overhead does not cost much because the component functions
can be inlined and vectorized by the dedicated compiler.
Consequently, the proposed video processing environment can
exploit much more performance of processors than existing
other frameworks.

B. Performance of Video Processing

We also evaluated the execution time of a video processing
program. For this evaluation, we used a straight line detection
program composed of four processing stages: binarization,
edge detection, hough transform, and inverse hough transform.
The length of the input video stream is 30 seconds and the
spatial resolution is XGA. This video stream is composed of

900 frames and the frame rate is 30 fps. The evaluation result
is shown in Fig. 12. These bars in Fig. 12 show the execution
time of programs with C++, RaVioli, and the proposed video
processing environment. The performance with Halide is not
evaluated because it does not support video processing. Hori-
zontal axis in this figure indicates the execution time, and each
bar is normalized to the execution time of the C++ program.
Only pipelining and vectorization are applied to the program
written in the proposed language, and tiling is not applied.
The number of threads used for pipelined execution is 8, 16,
and 32.
As shown in the figure, the program with the proposed en-

vironment outperforms 1.7-fold against the C++ program, and
1.4-fold against the RaVioli program. Here, in the straight line
detection program, hough transform occupies more than 90%
of the whole processing time for each frame. By examining
how many threads are assigned to each processing, it is found
that five threads were assigned to hough transform when the
total number of threads is eight, while only one thread is
assigned to each of the other processing stages. Hence, we
have confirmed that the load is automatically balanced between
the threads, and pipelined processing is fairly scheduled. When
increasing the number of threads to 16, the performance is
further improved because load is balanced more fairly by
Hyper-Threading technology. However, the performance with
32 threads is not much superior to with 16 threads.

C. Comparison with Halide

In this section, we compare the proposed video processing
environment with Halide from some points of view. Firstly,
Halide can support various platforms, while the proposed en-
vironment currently supports only general-purpose multi-core
processors. Thus, with Halide, developers can utilize many
platforms for a program. However, with Halide, developers
must use dedicated built-in functions for some types of ex-
pressions such as conditional branches, and the programming
style is quite different from common procedural languages.
Figure 13 and 14 show binarization programs written with
Halide and the proposed video processing language, respec-
tively. As shown in these figures, many dedicated built-in func-
tions should be used with Halide, while the syntax of the pro-
posed language is quite simple. Furthermore, some scheduling
descriptions for parallelizing the program is required with
Halide, as shown at line 12 in Fig. 13. On the other hand
with the proposed environment, there needs no description for
parallelization and the program is automatically parallelized.
Next, with respect to the performance of image processing,
the proposed environment clearly outperforms Halide as men-
tioned in Section VI-A. In addition, with respect to video
processing, Halide originally does not support video process-
ing, and developers must carefully design a video processing
program, by using an image processing program written with
Halide as a component of the video processing program and
applying the component to each frame of the video with an
appropriate processing scheduling. Consequently, the proposed
environment can achieve higher performance with more simple



1 int main(int argc, char ∗∗argv) {
2 Halide::Func Binary;
3 Halide::Var x,y,c;
4 Binary(x, y, c) = select( input(x, y, 0) < 85,
5 select( c == 0, input(x, y, 0) = 255,
6 c == 1, input(x, y, 1) = 255,
7 input(x, y, 2) = 255 ),
8 select( c == 0, input(x, y, 0) = 0,
9 c == 1, input(x, y, 1) = 0,
10 input(x, y, 2) = 0 ));
11

12 Binary.vectorization(x, 16).parallel(y, 8);
13

14 Halide::Image output = Binary.realize( input.width(), input.height(),
15 input.channels());
16 }

Fig. 13. A binarization program written with Halide. As shown, developers
should use select() functions for condition statements, and use a suitable
parallel scheduling function with appropriate configuration parameters, in
Halide programs.

1 (image)img1 > Binary > img1{
2 (pixel)p1@img1{
3 if(p1.R < 85) p1 = #black;
4 else p1 = #white;
5 }
6 }
7

8 (image)in > main > (image)out{
9 in > Binary > out;
10 }

Fig. 14. A binarization program written in the proposed language. The
syntax is more simple than Halide, and developers never need to consider
parallelization.

description than Halide.

VII. CONCLUSION

In this paper, we proposed a video processing environment
which can exploit several parallelism in programs. The en-
vironment is composed of a programming language which
provides higher abstraction of video processing than existing
languages, and a compiler which can generate a highly par-
allelized assembly program automatically. In order to confirm
the usefulness of the proposed video processing environment,
we compared the performance of the proposed environment
with C++, RaVioli, and Halide by using some image/video
processing programs. As a result, the programs written with
the proposed environment outperforms the programs with any
other languages and frameworks. In comparison to C++, the
performance of the proposed framework is 16.4-fold at a
maximum, and in comparison to Halide, it is 9.3-fold at a
maximum.
One of our future work is to implement a mechanism for

adjusting the total number of threads for video processing
automatically and dynamically. When the load is severely
imbalanced between processing stages, using more threads
than the number of cores will improve the total performance.
Another future work is supporting GPUs. It will be not

so difficult because RaVioli has supported GPUs [3], [19].
Enhancing the writeability of the language, and increasing
the number of video processing applications which can be
thoroughly written with the language are also future work.
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[6] U. Köthe, “Generic programming for computer vision: The vigra com-
puter vision library,” http://hci.iwr.uni-heidelberg.de/vigra/, Sep. 2011.

[7] “Pandore: A library of image processing operators (Version 6.4). [Soft-
ware]. Greyc Laboratory,” http://www.greyc.ensicaen.fr/˜regis/Pandore,
2011.

[8] S. Wang, Z. Dong, J. X. Chen, and R. S. Ledley, “PPL: A whole-image
processing language,” Computer Languages, Systems & Structures,
vol. 34, pp. 18–24, Apr. 2008.

[9] J. Segawa and T. Kanai, “The Array Processing Language and the
Parallel Execution Method for Multicore Platforms,” Proc. 1st Int’l
Symp. on Information and Computer Elements, 2007.

[10] J. Ragan-Kelley, A. Adams, S. Paris, M. Leboy, S. Amarasinghe, and
F. Durand, “Decoupling Algorithms from Schedules for Easy Optimiza-
tion of Image Processing Pipelines,” in ACM Transactions on Graphics
(TOG) - SIGGRAPH 2012 Conference Proceedings. ACM, Jul. 2012.

[11] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and
S. P. Amarasinghe., “Halide: a language and compiler for optimizing
parallelism, locality, and recomputation in image processing pipelines,”
in Proc. 34th ACM SIGPLAN Conf. on Programming Language Design
and Implementation (PLDI’13). ACM, 2013, pp. 519–530.

[12] R. Stewart, “An image processing language: External and shallow/deep
embeddings,” in Proc. 1st Int’l Workshop on Real World Domain Specific
Languages (RWDSL’16). ACM, 2016.

[13] J. Hegarty, R. Daly, Z. DeVito, J. Ragan-Kelley, M. Horowitz, and
P. Hanrahan, “Rigel: flexible multi-rate image processing hardware,”
in ACM Transactions on Graphics (TOG) - Proceedings of ACM
SIGGRAPH 2016. ACM, Jul. 2016.

[14] R. Membarth, O. Reiche, F. Hannig, J. Teich, M. Körner, and W. Eckert,
“Hipacc: A domain-specific language and compiler for image process-
ing,” in IEEE Trans. on Parallel and Distributed Systems, vol. 27. IEEE,
Jan. 2016, pp. 210–224.

[15] V. Korhonen, P. Jaaskelainen, M. Koskela, T. Viitanen, and J. Takala,
“Rapid customization of image processors using halide,” in Proc. IEEE
Global Conference on Signal and Information Processing (GlobalSIP).
IEEE, 2014, pp. 27–29.

[16] J. Hegarty, J. Brunhaver, Z. DeVito, J. Ragan-Kelley, N. Cohen, S. Bell,
A. Vasilyev, M. Horowitz, and P. Hanrahan, “Darkroom: compiling
high-level image processing code into hardware pipelines,” in ACM
Transactions on Graphics (TOG) - Proceedings of ACM SIGGRAPH
2014. ACM, Jul. 2014.

[17] C. Thirumoorthi and T. Karthikeyan, “Easy optimization of image
transformation using sfft algorithm with halide language,” in Int’l Conf.
on Contemporary Computing and Informatics (IC3I). IEEE, Jul. 2014.

[18] R. T. Mullapudi, V. Vasista, and U. Bondhugula, “Polymage: Automatic
optimization for image processing pipelines,” in Proc. 20th Int’l Conf.
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS’15). ACM, 2014, pp. 429–443.

[19] A. Ono, K. Kondo, T. Inaba, T. Tsumura, and H. Matsuo, “A gpu-
supported high-level programming language for image processing,” in
Proc. 7th Int’l Conf. on Signal-Image Technology and Internet-Based
Systems (SITIS2011), Nov. 2011, pp. 245–252.




