
2860
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.12 DECEMBER 2016

PAPER Special Section on Parallel and Distributed Computing and Networking

A Waiting Mechanism with Conflict Prediction on Hardware
Transactional Memory

Keisuke MASHITA†, Maya TABUCHI†, Ryohei YAMADA†, Nonmembers, and Tomoaki TSUMURA†a), Member

SUMMARY Lock-based thread synchronization techniques have been
commonly used in parallel programming on multi-core processors. How-
ever, lock can cause deadlocks and poor scalabilites, and Transactional
Memory (TM) has been proposed and studied for lock-free synchroniza-
tion. On TMs, transactions are executed speculatively in parallel as long as
they do not encounter any conflicts on shared variables. On general HTMs:
hardware implementations of TM, transactions which have conflicted once
each other will conflict repeatedly if they will be executed again in paral-
lel, and the performance of HTM will decline. To address this problem, in
this paper, we propose a conflict prediction to avoid conflicts before exe-
cuting transactions, considering historical data of conflicts. The result of
the experiment shows that the execution time of HTM is reduced 59.2% at
a maximum, and 16.8% on average with 16 threads.
key words: hardware transactional memory, conflict prediction, transac-
tion scheduling, concurrency control

1. Introduction

On multi-core processors, multiple threads can run in par-
allel for speed-up. Therefore, parallel programming be-
comes more important for programmers to achieve speed-
up. When multiple threads run in parallel on shared mem-
ory systems, mutual exclusion is required, and lock has
been commonly used. However, lock-based methods can
cause deadlocks, and they lead to poor scalability. To solve
this problem, Transactional Memory (TM) [1] has been pro-
posed as a lock-free synchronization mechanism. On TMs,
transactions are executed speculatively as long as they do
not encounter any conflicts on shared variables. However,
the interim results of transactions may be discarded be-
cause transactions are executed speculatively. Hence, when
a transaction modifies a value on the shared memory, TM
should save both new and old values (version management).
TM also should keep tracks of memory accesses, checking
whether each requested datum has been accessed yet by an-
other transaction or not (conflict detection). On Hardware
Transactional Memories (HTMs), which are the hardware
implementations of TM, the mechanisms for version man-
agement and conflict detection are implemented in hard-
ware. Therefore, each of version management and conflict
detection costs only a small delay overhead. It is known that
HTM can achieve higher scalability than lock-based mech-
anisms [2], and HTM is regarded as a promising paradigm.

Manuscript received January 6, 2016.
Manuscript revised May 9, 2016.
Manuscript publicized August 24, 2016.
†The authors are with Nagoya Institute of Technology,

Nagoya-shi, 466–8555 Japan.
a) E-mail: tsumura@nitech.ac.jp

DOI: 10.1587/transinf.2016PAP0006

On general HTMs, transactions, which have conflicted
on a shared variable once each other, will conflict repeat-
edly on the same shared variable if they will be executed in
parallel again. This conflict repetition will bring severe per-
formance degradation of HTMs. To address this problem,
we propose a conflict prediction to avoid such a conflict in
advance. Before a thread starts to execute a transaction, the
thread predicts future conflicts based on historical data, in-
cluding past conflicted pairs and temporal data about trans-
actions. Thereby, the thread can avoid causing a conflict
with transactions being executed by other threads.

In this paper, we aim to make the following contribu-
tions:

1. We propose a novel waiting mechanism for avoid-
ing future conflicts between transactions. The mecha-
nism keeps a transaction waiting before the transaction
starts. Hence, the waiting transaction will not cause
another conflict, unlike stalling transactions.

2. We use two types of historical data: past conflicted
transaction IDs and temporal data of transactions, as
parameters for predicting future conflicts. We also pro-
pose a criterion for deciding temporal data should be
considered for waiting periods or not.

3. We evaluate the prediction-based transaction schedul-
ing. The results show that the execution cycles can be
reduced 59.2% at a maximum and 16.8% on average.

2. Conflict Prediction for Transactions

In this section, we describe overviews of HTM, and point
out a problem of general HTMs. After that, we describe our
conflict prediction [3] to address the problem, and introduce
an improvement of our conflict prediction.

2.1 Conflict Detection and Resolution on General HTMs

To detect a conflict, TM must keep track of whether each
shared variable is accessed or not. To achieve this, each
cache block has two additional bit-fields called read bit and
write bit on general HTM. When a cache block is read dur-
ing a transaction, the read bit of the cache block is set. In the
same way, when a cache block is overwritten, the write bit
of the cache block is set. When a transaction is committed
or aborted, HTM resets all these bits which are set during
the transaction. To handle these bits, HTM uses a modified
cache coherence protocol. By managing the state of cache

Copyright c© 2016 The Institute of Electronics, Information and Communication Engineers



MASHITA et al.: A WAITING MECHANISM WITH CONFLICT PREDICTION ON HARDWARE TRANSACTIONAL MEMORY
2861

blocks and testing these bits, HTM keeps the caches coher-
ent.

When a thread tries to access a shared variable, the
thread sends a coherence request to detect a conflict. If the
access will not cause any conflicts, the thread receiving a
coherence request from another thread sends back an Ack.
On the other hand, if a conflict is detected, a Nack is sent
back. In eager conflict detection model, when a thread re-
ceives a Nack, it knows that a conflict with the thread which
sent the Nack is detected, and stalls, waiting for the oppo-
nent thread to commit. The thread which stalls its transac-
tion will keep sending the coherence request intermittently.
If the opponent thread commits its transaction, the thread
which has stalled its transaction finally receives an Ack, and
can resume its transaction.

Figure 1 shows an example where conflicts are detected
with LogTM [4]: the most general HTM system which
adopts eager conflict detection. In this example, the thread
thr.1 executes the transaction Tx.X, thr.2 executes Tx.Y, and
thr.3 executes Tx.Z. Now, assume that, thr.1 has issued load
A and thr.2 has issued load B and load C. First, when thr.2
tries to issue store A (at t1), a conflict is detected (t2) be-
cause thr.1 has already accessed to the address A. In this
case, as thr.2 receives a Nack from thr.1, thr.2 stalls Tx.Y
(t3), waiting for thr.1 to commit. To avoid causing deadlock,
thr.1 also sets a flag called possible cycle. After that, when
thr.3 tries to issue store C, another conflict is detected be-
cause thr.2 has already accessed to the address C. In this
case, thr.3 receives a Nack from thr.2, and thr.3 stalls Tx.Z
(t4), waiting for thr.2 to commit. Afterwards, when thr.1
tries to issue store B, another conflict is detected because
thr.2 has already accessed to the address B. In this case, as
thr.1 has set possible cycle flag, thr.1 aborts Tx.X (t5). As a
result, thr.1 and thr.2 can avoid deadlock.

As thr.2 in this example, a thread which stalls its
transaction for a conflict can cause another new conflict.
This is because a thread which stalls its transaction has al-

Fig. 1 Conflict resolution on a general HTM.

ready accessed some addresses and the thread does not reset
read/write bits for the addresses until the thread commits or
aborts.

2.2 Avoiding Future Conflicts

As mentioned in Sect. 2.1, a thread which stalls its transac-
tion often causes a new conflict. To address this problem,
in this paper, we propose a conflict prediction for avoiding
conflicts before a thread executes a transaction, based on
historical data of conflicts.

Transactions which have conflicted once each other
tend to conflict repeatedly because their execution paths
rarely change and the threads often access to the same
shared variables when they are executed again. To achieve
the conflict prediction, we make each thread remember the
IDs of the past conflicted transactions as historical data of
conflicts. Before starting a transaction, a thread predicts
whether a conflict will be caused or not during the transac-
tion, by referring to the historical data. If the thread predicts
that a conflict will be caused, the thread waits for the oppo-
nent thread to commit without starting the transaction. As
mentioned in Sect. 2.1, stall is also a ‘waiting’ mechanism
for conflict resolution. In contrast to stall, a waiting thread
without starting its transaction does not cause a new conflict,
because the thread waits without accessing any addresses.

Figure 2 shows an example where threads try to execute
same transactions as Fig. 1 and can avoid conflicts by con-
flict predictions. Assume that Tx.Y had already conflicted
with Tx.X and Tx.Z, and each thread remembers that. First,
thr.2 sends the transaction ID ‘Y’ to all the other threads
when thr.2 starts to execute Tx.Y (t1). Receiving this, thr.1
and thr.3 remember the transaction ID ‘Y.’ After that, thr.1
tries to execute Tx.X while Tx.Y is running on thr.2. At this
time, thr.1 predicts whether Tx.X will conflict with a trans-
action which is running on another thread or not by referring
to historical data of conflicts (t2). As a result, thr.1 knows
that Tx.X has already conflicted with Tx.Y running on thr.2,
and thr.1 predicts that thr.1 will conflict with thr.2. There-
fore, thr.1 waits for thr.2 to commit Tx.Y without starting

Fig. 2 Transaction scheduling with conflict predictions.



2862
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.12 DECEMBER 2016

Fig. 3 Comparison of two types of conflict predictions.

Tx.X. Thereby, thr.1 sends a Waiting message to thr.2. In the
same way, thr.3 predicts that thr.3 will conflict with thr.2 be-
fore thr.3 starts to execute Tx.Z (t3). Hence, thr.3 waits for
thr.2 to commit, and it sends a Waiting message to thr.2. Af-
ter thr.2 commits Tx.Y, thr.2 sends a Committed message to
each of thr.1 and thr.3 (t4). When thr.1 and thr.3 receive the
Committed messages, they start to execute transactions (t5).
As mentioned above, threads can execute their transactions
without conflicting with each other.

2.3 Minimizing Waiting Time

As mentioned in Sect. 2.2, threads can predict and avoid
conflicts by remembering past opponent transaction IDs, but
the waiting time can be longer than the minimum necessary
time to avoid the conflict. If each thread knows when a con-
flict will be caused, the thread can wait minimum for avoid-
ing the conflict.

Figure 3 (a) shows an example where a thread predicts
a conflict by checking an opponent transaction is running or
not, and waits for the opponent threads to commit. Assume
that thr.2 remembers that Tx.Y had already conflicted with
Tx.X. First, before thr.2 starts to execute Tx.Y, thr.2 predicts
that thr.2 will conflict with thr.1, and thr.2 waits for thr.1 to
commit Tx.X (t1). After a while, as thr.2 receives a Com-
mitted message, it starts to execute Tx.Y (t2). As mentioned
above, these two threads can execute their transactions with-
out causing a conflict. However, for avoiding the conflict,
load A in Tx.Y needs to be after the commit of Tx.X, but
the start of Tx.Y does not need to be. Therefore, as in this
example, if a conflict is caused after a long period than the
transaction starts, the most of waiting time will become fu-
tile. If a thread can compare the predicted remaining exe-
cution time of the opponent transaction and the predicted
remaining time until a conflict, such a futile wait can be
avoided. To achieve this, we make each thread remember

two temporal data of each transaction. One is how long the
whole execution time of the transaction is, and the other is
how much time later a conflict will be caused than the trans-
action starts.

Figure 3 (b) shows an example where a thread does
not wait futilely when the thread predicts a conflict. As-
sume that thr.2 has historical data used for conflict predic-
tion. First, thr.1 sends the transaction ID ‘X’ to all the other
threads when thr.1 starts to execute Tx.X (t1). On the other
hand, thr.2 remembers the transaction ID ‘X.’ In order to pre-
dict a conflict, thr.2 sends a request to each opponent thread
for inquiring the remaining time until the commit of the op-
ponent transaction (t2). After that, thr.2 compares T1 the
remaining time of Tx.X sent back from thr.1 with T2 the re-
maining time until the conflict will be caused between Tx.X
and Tx.Y (t3). In this case, as T2 is shorter than T1, thr.2
waits for being allowed to start Tx.Y and sends a Waiting
message to thr.1. After a while, when T1 becomes shorter
than T2, thr.1 sends a Wakeup message to thr.2 for prompting
thr.2 to execute its transaction (t4). When thr.2 receives this
Wakeup message, thr.2 starts to execute Tx.Y. In this way,
thr.2 can avoid causing a conflict with the minimum waiting
time. To implement this conflict prediction, we define two
messages, Waiting and Wakeup, on the coherence protocol
for accurate conflict prediction.

2.4 Usability of Temporal Data

As mentioned in Sect. 2.3, it is important to avoid futile
waiting by estimating the minimum waiting time based on
historical temporal data. However, the execution paths of a
transaction can sometimes vary because of such as branch
instructions. Hence, such the temporal values of a transac-
tion can also vary on each execution, and the estimation ac-
curacy for the minimum waiting time will severely decline.
In such a case, a conflict or futile waiting will not be avoided
and the total performance can not be improved.

To address this, we introduce a criterion for deciding
temporal data should be considered or not. We define a pa-
rameter ‘conflicts per commit,’ and uses it as the criterion.
Initially, the proposed mechanism estimates the minimum
waiting time at each transaction beginning. Once, ‘con-
flicts per commit’ exceeds a given threshold, the mechanism
cease to use temporal data and make a transaction wait for
the opponent transaction to commit, because the estimation
accuracy for the minimum waiting time should not be reli-
able. Detailed implementation and behavioral model will be
explained in Sect. 3.4.

3. Implementation

In this section, we describe the additional hardware units
required for implementing the conflict prediction on HTM
and how threads execute their transactions.



MASHITA et al.: A WAITING MECHANISM WITH CONFLICT PREDICTION ON HARDWARE TRANSACTIONAL MEMORY
2863

Fig. 4 Additional hardware units for the proposed conflict prediction.

3.1 Additional Hardware Units

To implement the conflict prediction described in Sect. 2,
we have installed following hardware units in each core.
For achieving the conflict prediction, some temporal data
of transactions should be managed and used as parameters.
However, the temporal data such as whole execution time
of a transaction will vary at each execution even when its
execution path does not change, because of cache misses or
stalls. Hence, we use the number of memory accesses as an
approximation of execution time.

Opponent-Counter (O-Counter): This counter records the
number of threads which are executing opponent trans-
actions.

Access-Counter (A-Counter): This counter records the
number of memory accesses which are issued in the
current transaction.

Conflict-Table (C-Table): This table stores the number of
memory accesses. When a transaction which is running
on the own core conflicts with another transaction, the
core stores the number of memory accesses up to that
time. It is used as the approximate value for the length
of the period from the transaction start to the conflict.

Wait-Table (W-Table): This table stores the remaining
number of memory accesses until allowing other
threads to execute their transactions. This value is
decremented at every memory access by the own
thread. When the value becomes negative, the thread
sends a Wakeup message to the thread which is remem-
bered as a waiting thread on this table.

Time-Table (T-Table): This table stores the total number of
memory accesses issued in the past execution of each
transaction.

Opponent-Table (O-Table): This table stores IDs of trans-
actions running on other threads.

The number of memory accesses in a transaction can
vary because of execution path variation. Hence, when com-
mitting a transaction, the values for the transaction in C-
Table and T-Table are updated if the number of memory ac-
cesses in the current execution is smaller than the stored past
values. The reason for remembering and using the past min-

Fig. 5 The mechanism for remembering historical data.

imum value is that wasteful waits and conflicts should be
avoided as much as possible.

Some simple functional units for calculating temporal
data are also required and the logic for them will cost some
area overhead. However, the calculations are very simple
and the area overhead should be negligible. We will dis-
cuss the hardware cost for these additional units in detail in
Sect. 4.4.

3.2 How to Remember Historical Data of Conflicts

In this section, we will describe how threads remember his-
torical data for predicting conflicts. Figure 5 illustrates an
example. First, Core1 increments the value of its A-Counter
for remembering the number of memory accesses, when
thr.1 issues load A (t1). Similarly, Core2 increments the
value of its A-Counter when thr.2 issues load B (t2) and
load A (t3). After thr.1 issues load C (t4), thr.1 tries to is-
sue store A (t5) and a conflict is detected (t6) because thr.2
has already accessed to the address A. In this case, thr.1 re-
ceives a Nack from thr.2, and stalls Tx.X (t7). At the time,
as thr.1 receives the Nack, Core1 increments the value of its
A-Counter, and copies the value to C-Table. In this exam-
ple, Core1 stores ‘3’ on C-Table as the approximate value
representing the time from the start of Tx.X to the conflict
between Tx.X and Tx.Y. In this way, Core1 remembers his-
torical data about this conflict on C-Table. After that, thr.2
issues store B and Core2 increments the value of its A-
Counter (t8). Finally, the value of its A-Counter is copied
to T-Table as the approximate total execution time of Tx.Y,
when thr.2 commits Tx.Y (t9). As mentioned above, threads
manage historical data for predicting conflicts.

3.3 How to Predict and Avoid Conflicts

In this section, we will describe how a thread predicts a fu-
ture conflict and avoids it. Figure 6 shows an example where
a thread predicts that a conflict will be caused. In Fig. 6, as-
sume that thr.1 and thr.2 had already conflicted with each
other, and each of them remembers execution time of its



2864
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.12 DECEMBER 2016

Fig. 6 The mechanism of the conflict prediction.

transaction and the time until the conflict between Tx.X and
Tx.Y.

First, thr.1 sends the transaction ID ‘X’ to all the other
threads when thr.1 starts to execute Tx.X (t1). Core2 stores
the ID ‘X’ sent from thr.1 on O-Table. After that, thr.2 sends
a request for inquiring the remaining time until the com-
mit of the transaction to each opponent thread stored on O-
Table, in order to predict when should thr.2 start Tx.Y (t2).

Receiving this request, thr.1 calculates the remaining
time and gets the value ‘3,’ by subtracting ‘1’ the value of its
A-Counter from ‘4’ the execution time which is remembered
on C-Table. Afterwards, thr.1 sends ‘X’ as the transaction ID
and the calculated result ‘3’ to thr.2. Receiving them, thr.2
predicts whether a conflict will be caused or not by referring
to the saved historical data. In this example, thr.2 checks
whether ‘Y’ is stored as one of the opponent transaction of
Tx.X on C-Table or not, and compares the time remaining
until the commit of Tx.X and the time remaining until the
conflict between Tx.X and Tx.Y. If the time remaining until
the commit of Tx.X is shorter than the time remaining until
the conflict between Tx.X and Tx.Y, thr.2 can start to exe-
cute Tx.Y. In this case, the time until the commit of thr.1
is longer than the time until the conflict between Tx.X and
Tx.Y. Therefore, thr.2 waits to start Tx.Y (t3).

As thr.2 predicts that a conflict will be caused, thr.2
stores ‘1’ as the number of opponent threads on O-Counter,
and sends a Waiting message, which piggybacks the time re-
maining until the conflict between Tx.X and Tx.Y, to thr.1.
When thr.1 receives this Waiting message, thr.1 subtracts
the time remaining until the conflict between Tx.X and Tx.Y
from the time remaining until the commit Tx.X (t4). As a
result, Core1 stores ‘1’ on W-Table as the remaining time
until thr.1 allows thr.2 to execute Tx.Y.

Afterwards, the value of W-Table becomes negative
when thr.1 issues store A (t5). Therefore, thr.1 sends
a Wakeup message to thr.2 for prompting thr.2 to start
Tx.Y. Receiving this Wakeup message, Core2 decrements
the value of its O-Counter. At this time, thr.2 starts Tx.Y be-

Fig. 7 Additional hardware units for accuracy validation.

cause the value of O-Counter becomes ‘0’ and thr.2 knows
that no opponent transaction is running (t6). As mentioned
above, thr.1 and thr.2 can avoid causing a conflict without
wasteful waiting time.

3.4 Accuracy Validation for Waiting Time Estimation

As explained in Sect. 2.4, we introduce a criterion for de-
ciding temporal data should be considered or not, because
inappropriate waiting time may severely deteriorate the per-
formance of HTM. For calculating ‘conflicts per commit’
which we adopt as the criterion, we have installed two ta-
bles and one bitmap in each core.

Switching-Bitmap (Sw-Bitmap): This bitmap records
whether temporal data should be considered or not for
each transaction.

Execution count-Table (Ec-Table): This table records the
number of commits of each transaction.

Conflict count-Table (Cc-Table): This table records the
number of conflicts of each transaction.

Remind that each thread estimates the minimum wait-
ing time before starting a transaction, as long as ‘conflicts
per commit’ does not reach a given threshold. For calculat-
ing ‘conflicts per commit,’ each thread counts the number of
conflicts and commits on Ec-Table and Cc-Table.

When committing a transaction, if the associated value
in Ec-Table reaches 128, ‘conflicts per commit’ for the
transaction is calculated by using the associated values in
Ec-Table and Cc-Table, and these values are reset to zero.
If the calculated result is over a given threshold, the associ-
ated bit in Sw-Bitmap is set and it is broadcast to all cores.
Afterwards, historical temporal data will be never used for
scheduling the transaction because the reliability of histori-
cal temporal data is regarded as low.

4. Performance Evaluation

In this section, we describe the evaluation results, and esti-
mate the additional hardware cost.



MASHITA et al.: A WAITING MECHANISM WITH CONFLICT PREDICTION ON HARDWARE TRANSACTIONAL MEMORY
2865

Table 1 Simulation parameters

Processor SPARC V9
#cores 32 cores
clock 1 GHz
issue width single
issue order in-order
non-memory IPC 1

D1 cache 32 KBytes
ways 4 ways
latency 1 cycle

D2 cache 8 MBytes
ways 8 ways
latency 20 cycles

Memory 8 GBytes
latency 450 cycles

Interconnect network hierarchical switch topology
link latency 14 cycles

Additional hardware (discussed in Sect. 4.4)
per core 569 bytes
per processor 9.1 KBytes

Fig. 8 Execution cycles ratio of each slowest thread.

4.1 Evaluation Environment

We used a full-system execution-driven functional simula-
tor Wind River Simics [5] in conjunction with customized
memory simulators built on Wisconsin GEMS [6] for evalu-
ation. Simics provides a SPARC-V9 architecture and boots
Solaris 10, and GEMS provides a detailed timing simula-
tion for the memory subsystem. The detailed configuration
of the simulated processor is shown in Table 1. The topol-
ogy and the link latency of interconnect network are defined
based on LogTM [4]. We have evaluated the execution cy-
cles of 11 workloads from GEMS microbench, SPLASH-2
benchmark suite [7], and STAMP benchmark suite [8] with
16 threads.

4.2 Evaluation Results

The evaluation results with following four HTM configura-
tions are shown in Fig. 8, Fig. 9 and Table 2.

(B) LogTM (baseline)

(R1) Reference model #1; uses only opponent transaction
IDs as historical data (as described in Sect. 2.2).

(R2) Reference model #2; always uses both of opponent
transaction IDs and temporal data as historical data (as
described in Sect. 2.3).

(P) Proposal; initially uses both of opponent transaction
IDs and temporal data, and ceases to use temporal data
if they are regarded as unreliable with the mechanism
described in Sects. 2.4 and 3.4.

Figure 8 shows the execution cycles of each benchmark
program, or the execution cycles of the slowest thread of
each benchmark program. On the other hand, Fig. 9 shows
the sum total of execution cycles of all 16 threads. Each bar
in both figures is normalized to the baseline (B). For simu-
lating multi-threaded execution on a full-system simulator,
the performance variability [9] must be considered. Hence,
we tried 10 times on each benchmark, and measured 95%
confidence interval. The confidence intervals are illustrated
as error bars in Fig. 8.

The legend in Fig. 9 shows the breakdown items of the
sum total cycles. They represent the execution cycles out of
transactions (Non trans), the execution cycles in the transac-
tions which are committed/aborted (Good trans/Bad trans),
the aborting overheads (Aborting), the exponential backoff
cycles (Backoff ), the stall cycles (Stall), the barrier syn-
chronization cycles (Barrier), and the waiting cycles be-
fore starting transactions by the proposed conflict prediction
(Wait).

As a result of the evaluation, the performance of many
programs is improved with both reference models (R1) and
(R2). However, the performance of some programs with
(R2) is better than (R1) and the the others with (R1) is better
than (R2).

Figure 10 plots ‘conflicts per commit.’ As shown in
Fig. 8 and Fig. 10, ‘conflicts per commit’ of each program
whose performance declines with (R2) is around or higher
than 100%. Thus, we defined 100% as the threshold for (P).
In other words, when committing a transaction, if its associ-
ated value in Ec-Table reaches 128 and its associated value
in Cc-Table is over 128, the associated bit in Sw-Bitmap is
set. No division logic is required but only a comparator is
required for implementing it.

Thereby with (P), the performance of almost all pro-
grams is better than both of (R1) and (R2). As a result,
the execution cycles are reduced 59.2% at a maximum, and
16.8% on average with (P).

We can get the following general conclusions from the
evaluation result.

1. When the accuracy of the proposed conflict prediction
is high, even the transactions which will bring conflicts
can run in parallel as long as possible, and the perfor-
mance is improved. The prediction accuracy will be
high when the execution time of each transaction does
not largely vary.

2. Even when the prediction accuracy is low, frequent
conflicts are avoided and the conflict overhead can be



2866
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.12 DECEMBER 2016

Fig. 9 The sum of the total execution cycles ratio.

Table 2 Reduced cycle rate.

(R1) (R2) (P)
ave 12.5% 14.7% 16.8%
max 58.9% 61.2% 59.2%

reduced by delaying a transaction until its potential op-
ponent transactions commit.

3. The reason for the low prediction accuracy with some
programs is the execution path variation in the transac-
tions, especially resulting from the branch instructions
in the transactions.

We go to the detailed examination of these results in the
following section.

4.3 Detailed Examination

In the following, we take up some characteristic programs
and analyze them.

(1) Deque, Prioqueue

The performance of Deque and Prioqueue is improved with
both (R1) and (R2). We examined these programs and it is
found that each program has only one transaction. Hence,
with (B), many threads access to the same address when
the transaction is executed in parallel. Therefore, conflicts
and aborts were caused repeatedly with (B). By contrast, the
number of conflicts with (R1) and (R2) is smaller than that
of (B), and Stall, Aborting, and Bad trans are reduced.

However, the performance of these programs with (R1)
is better than (R2). To investigate the origin of this result,

Fig. 10 Conflicts per commit.

we examined these programs in detail, and it is found that
the number of memory accesses tends to change in the pro-
grams, because the execution path varies due to branch in-
structions. Hence, with (R2), conflict predictions sometimes
fail and Stall, Aborting, and Bad trans of some programs
are larger than with (R1).

As shown in Fig. 10, ‘conflicts per commit’ is high and
the reliability of historical temporal data should be low with
these programs. Hence, the performance with (R1) is bet-
ter than with (R2), and (P) can achieve almost equal perfor-
mance with (R1).

(2) Vacation

The performance of Vacation with (R1) declines. With (R1),
threads can avoid conflicts, but the prediction sometimes re-



MASHITA et al.: A WAITING MECHANISM WITH CONFLICT PREDICTION ON HARDWARE TRANSACTIONAL MEMORY
2867

sults in false positive. This is because all transactions in
Vacation include branch instructions, and threads rarely ac-
cess the same addresses. As a result, conflict prediction fails
and causes wasteful waits frequently.

On the other hand, the performance deterioration with
(R2) is smaller than that of (R1) although Stall with (R2)
is larger than that of (R1). This is because threads do not
need to wait for opponent threads to commit, and can exe-
cute these transactions in parallel.

The proposal (P) can not achieve good performance
with Vacation. This is because ‘conflicts per commit’ is
slightly higher than 100% the threshold we have defined,
as shown in Fig. 10, and historical temporal data are not
used, although (R2) can achieve better performance than
(R1). This increases Wait futilely. Hence, as one of our fu-
ture works, we should adjust the threshold for each program
considering its characteristics and behaviour.

Stall is also still large with (P). As mentioned above,
in Vacation, transactions have some branch instructions,
and the low prediction accuracy resulting from them brings
many stalls. In addition, once a stall is caused, the stall
lasts rather long because the transactions in Vacation include
many instructions. Genome also has similar characteristics
to Vacation although the total performance of Genome is
slightly improved.

(3) Btree

The performance of Btree declines with (R1) because waste-
ful waits are caused frequently. We examined this program,
and it is found that Btree has two transactions. One (we
call it Tx.Insert) includes both read and write accesses to
a shared variable, and the other (we call it Tx.Lookup) in-
cludes only read accesses to the shared variable. Therefore,
with (B), many conflicts are caused between Tx.Insert and
Tx.Insert, but Tx.Insert rarely conflicts with Tx.Lookup.

If Tx.Insert conflicts with Tx.Lookup even once,
Tx.Insert and Tx.Lookup are remembered as a pair of con-
flicted transactions with (R1). As a result, these two transac-
tions are serialized, and wasteful waiting time is increased
with (R1) because Tx.Insert rarely conflicts with Tx.Lookup
practically.

On the other hand, with (R2), a thread which predicts
that a conflict will be caused does not need to wait for op-
ponent threads to commit, and threads can execute these
transactions in parallel.However, as same as Deque and Pri-
oqueue, the transactions in Btree include branch instructions
which lead conflict predictions to fail. This results in rather
large Stall, Aborting and Bad trans.

With (P), the performance of Btree is quite im-
proved. To investigate the origin of this result, we mea-
sured and compared ‘conflicts per commit’ of Tx.Insert and
Tx.Lookup. As shown in Fig. 11, it is found that Tx.Lookup
rarely conflicts and ‘conflicts per commit’ of two trans-
actions are very different. The number of commits of
Tx.Lookup is indeed four times as many as Tx.Insert. Hence,
by using historical temporal data only for Tx.Lookup, (P)
can drastically reduces Wait compared with (R1), while

Fig. 11 Conflicts per commit of each transaction of Btree.

keeping Backoff and Bad trans as small as (R1).

(4) Barnes

The performance of Barnes with (R2) does not much differ
from with (R1). This is because Barnes has a transaction
whose number of memory accesses is very large exception-
ally, and hardware units such as A-Counter sometimes over-
flow. Thereby, because threads can not use temporal data for
conflict predictions, each thread which predicts that a con-
flict will be caused waits for the opponent thread to commit,
and the performance with (R2) is quite equal to (R1).

(5) Cholesky, Kmeans

The performance of Cholesky and Kmeans is not improved
with both (R1) and (R2). This is because Non trans occupies
most of the total cycles of these programs. Therefore, the
ratio of the performance improvement is just a little smaller
than the other programs.

4.4 Additional Hardware Cost

To implement the conflict prediction, A-Counter should
have an enough bit width for counting as many as the max-
imum number of memory accesses in transactions. Then,
we have measured how many load/store instructions are ex-
ecuted in each transaction. As a result, it is found that if A-
Counter has 13-bit width, it does not overflow with almost
all practical programs.

Similarly, we have measured how many transactions
are included in each program for investigating the required
size of C-Table and T-Table. As a result, it is found that 17
transactions are included at a maximum. Besides, each entry
of C-Table and T-Table needs 13-bit width because it should
remember the maximum number of memory accesses in a
transaction. Therefore, T-Table costs 221 bits (17 entries ×
13 bits) and C-Table costs 3,757 bits (172 entries × 13 bits).

In order to count up to the maximum number of
threads, for a 16-core processor which can execute 16
threads, O-Counter should have 4-bit width. Incidentally,
W-Table needs 13-bit width, and costs 195 bits for a 16-



2868
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.12 DECEMBER 2016

core processor. Similarly, O-Table needs 5-bit width, and
O-Table costs 75 bits for a 16-core processor.

In addition, each core needs further hardware units to
implement the accuracy validation mechanism for historical
temporal data, as mentioned in Sects. 2.4 and 3.4. First, to
records the number of conflicts and commits of each trans-
action, each core needs Ec-Table and Cc-Table. Each entry
of these tables needs 8-bit width because it should remember
up to 128. Therefore, each table costs 136 bits (17 entries ×
8 bits). Besides, each core needs a 17-bit width Sw-Bitmap.

Consequently, for a 16-core processor, the total addi-
tional hardware is estimated at only 569 bytes per core, or
only 9.1 Kbytes per processor. Indeed this size is calculated
based on the benchmark programs, but it will be enough also
for many practical applications because STAMP programs
deal with real-world problems. Even if it is insufficient for a
certain program, the program can correctly run with slightly
deteriorated prediction accuracy.

4.5 Message Exchange Overhead

In this section, we estimate the overhead for messages such
as Wakeup and Committed implemented by enhancing co-
herence protocol for the conflict prediction. The overhead
can be expressed as M × L, where M is how many times
messages are sent, and L is the link latency between cores.
In this paper, we assumed that the link latency is 14 cycles as
shown in Table 1, based on [4]. We examined all benchmark
programs and it is found that Btree has the largest overhead
ratio among all programs, and messages are sent about 300
thousands times. Therefore, the total overhead cycles across
all 16 threads can be calculated as 300,000 × 14, and the
result is about four millions. On the other hand, the total ex-
ecution cycles of Btree is about 200 millions. Hence, even
if the overhead across 16 threads is concentrated on only
one thread, the overhead ratio of Btree which has the largest
overhead ratio is only 2%. In addition, the average overhead
ratio of the all programs is only 0.5%. Thus, the overhead
will be quite negligible.

5. Related Work

So far, various techniques for HTM have been proposed. To
reduce the cost for re-execution, some techniques for op-
timizing rollbacks have been proposed [10]–[12]. Besides,
many thread scheduling techniques for reducing conflicts
by controlling transactional sequences have been also pro-
posed [13]–[15].

To improve the performance of parallel execution, Yoo
et al. [16] have proposed a method based on the concept
of adaptive transaction scheduling (ATS). ATS dynamically
dispatches transactions and controls the number of concur-
rently executing transactions. Thereby, ATS can improve
the performance of workloads which lack for parallelism be-
cause of high contentions. The throughput of Radiosity is
improved 1.97x with ATS. However, the improvement with
almost all programs other than Radiosity and Deque is quite

small and lower than only 5%. On the other hand with our
proposal, the execution cycles is maximally reduced 59.2%
with Deque. This means that the throughput is improved
to about 2.45x with Deque. In addition, the execution cy-
cles of five programs are reduced over about 20% with our
proposal, or the throughput is improved over about 25%.
Especially, the performance of Raytrace is not improved at
all with ATS, while it is improved about 30% with our pro-
posal. As same as Btree, whose characteristic is illustrated
in Fig. 11, Raytrace also has two different types of transac-
tion; one rarely conflicts and the other frequently conflicts.
With our proposal, the conflict overhead of Raytrace is re-
duced by serializing the latter type of transaction which con-
flicts frequently while the other type of transaction can still
run in parallel. On the other hand, with ATS, all transactions
are serialized when the overall conflict frequency becomes
higher than a threshold.

Blake et al. [17] have proposed a method focusing on
common memory locations which are accessed in multiple
transactions. In the method, locality of memory access on
each consecutive execution of a transaction is called ‘simi-
larity’ and the similarity is calculated with bloom filter. If
the similarity exceeds a threshold, the transactions are seri-
alized. The performance of this method is evaluated with
STAMP benchmark suite [8] and rather improved. How-
ever, the evaluation results are not practical because they
are evaluated with 64 threads.It is known that the programs
in STAMP benchmark suite bring so many conflicts and
aborts when they are executed with many threads. The per-
formance with 64 threads is drastically lower even than the
performance of being executed serially with only one thread.
Hence, the estimation of the baseline performance and the
performance improvement in [17] should be quite unfair,
because only serializing transactions can increase perfor-
mance.

Armejach et al. [18] have proposed a prediction mech-
anism called HARP to avoid repetitive aborts. HARP is in-
spired by branch prediction and achieves high accuracy of
a conflict prediction by considering the latest behavior of
transactions and locality in conflicting memory references.
The approach used in HARP is partly similar to our conflict
prediction, but there are some distinct differences. Specifi-
cally, only the transactions, which are predicted not to con-
flict each other, can run in parallel on HARP. On the other
hand with our proposal, even the transactions which will
conflict each other can run partially in parallel, or their ex-
ecution can be partially overlapped. In addition, HARP re-
quires 2.06kB memory cells per core, and the hardware cost
is about 3.6x as large as the cost for our conflict prediction.
Incidentally, some benchmark programs seem to be arbitrar-
ily modified for evaluating HARP in the paper [18]. For ex-
ample, the paper describes that Vacation has only one kind
of transaction, and the evaluation results shown in the paper
illustrates that pretty large cycles for barrier synchroniza-
tion are consumed in Vacation program. However, Vacation
originally has three kinds of transactions and has no bar-
rier synchronization. Hence, although the paper shows that



MASHITA et al.: A WAITING MECHANISM WITH CONFLICT PREDICTION ON HARDWARE TRANSACTIONAL MEMORY
2869

HARP can significantly improve the performance of Vaca-
tion unlike our proposal, their results should not be simply
compared.

Akpinar et al. [19] have proposed some novel ideas
for conflict resolution policies on HTMs, such as alternat-
ing priorities of transactions in many various ways based
on the total number of stalled or aborted transactions. In
addition, they have considered the most common perfor-
mance pathologies [20] such as InactiveStall and Friend-
lyFire. However, all these methods can not efficiently avoid
causing conflicts because they can control transaction be-
havior only after starting the transactions, and the perfor-
mance gain is up to only 15%. On the other hand, our novel
transaction scheduling can quite improve the performance
of many practical programs, because it can avoid causing
conflicts before starting transactions.

6. Conclusions

In this paper, we propose a conflict prediction for transac-
tion scheduling on HTM to avoid conflicts in advance. The
conflict prediction uses opponent transaction IDs and tem-
poral data about transactions. When a thread predicts that
a conflict will be caused, it waits for being allowed to start
its transaction to avoid the conflict. We have evaluated the
conflict prediction by comparing with LogTM, through ex-
periments with GEMS microbench, SPLASH-2 benchmark
suite, and STAMP benchmark suite. The evaluation results
show that HTM with the conflict prediction decreases the
total execution cycles 59.2% at a maximum, and 16.8% on
average with 16 threads. However, the conflict prediction
sometimes fails if a transaction includes branch instructions
and its execution path changes. Thereby, a conflict may be
caused or a thread may wait wastefully. Therefore, one of
our future work is to improve the prediction accuracy by
considering variation of execution paths in transactions.

Acknowledgments

This research was partially supported by the grant from the
Tatematsu Foundation.

References

[1] M. Herlihy and J.E.B. Moss, “Transactional Memory: Architec-
tural Support for Lock-Free Data Structures,” Proc. 20th Annual
Int’l Symp. on Computer Architecture (ISCA’93), pp.289–300, May
1993.

[2] V. Leis, A. Kemper, and T. Neumann, “Exploiting Hardware Trans-
actional Memory in Main-Memory Databases,” Proc. 30th Int’l
Conf. on Data Engineering (ICDE’2014), pp.580–591, Jan. 2014.

[3] K. Mashita, S. Miyake, R. Yamada, and T. Tsumura, “Yet Another
Waiting Mechanism for Hardware Transactional Memory,” Proc. 3rd
Int’l Workshop on Computer Systems and Architectures (CSA’15),
pp.400–403, Dec. 2015.

[4] K.E. Moore, J. Bobba, M.J. Moravan, M.D. Hill, and D.A.
Wood, “LogTM: Log-based Transactional Memory,” Proc. 12th Int’l
Symp. on High-Performance Computer Architecture (HPCA’06),
pp.258–269, Feb. 2006.

[5] P.S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G.
Hållberg, J. Högberg, F. Larsson, A. Moestedt, and B. Werner, “Sim-
ics: A Full System Simulation Platform,” Computer, vol.35, no.2,
pp.50–58, Feb. 2002.

[6] M.M.K. Martin, D.J. Sorin, B.M. Beckmann, M.R. Marty, M. Xu,
A.R. Alameldeen, K.E. Moore, M.D. Hill, and D.A. Wood, “Multi-
facet’s General Execution-driven Multiprocessor Simulator (GEMS)
Toolset,” ACM SIGARCH Computer Architecture News, vol.33,
no.4, pp.92–99, Sept. 2005.

[7] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta, “The
SPLASH-2 Programs: Characterization and Methodological Con-
siderations,” Proc. 22nd Annual Int’l. Symp. on Computer Architec-
ture (ISCA’95), pp.24–36, 1995.

[8] C.C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “STAMP:
Stanford Transactional Applications for Multi-Processing,” Proc.
IEEE Int’l Symp. on Workload Characterization (IISWC’08),
pp.35–46, Sept. 2008.

[9] A.R. Alameldeen and D.A. Wood, “Variability in Architectural
Simulations of Multi-Threaded Workloads,” Proc. 9th Int’l Symp.
on High-Performance Computer Architecture (HPCA’03), pp.7–18,
Feb. 2003.

[10] J.E.B. Moss and A.L. Hosking, “Nested Transactional Memory:
Model and Preliminary Architecture Sketches,” Science of Com-
puter Programming, vol.63, no.2, pp.186–201, 2006.

[11] M.J. Moravan, J. Bobba, K.E. Moore, L. Yen, M.D. Hill, B. Liblit,
M.M. Swift, and D.A. Wood, “Supporting Nested Transactional
Memory in LogTM,” Proc. 12th Int’l Conf. on Architectural Support
for Programming Languages and Operating Systems (ASPLOS),
pp.359–370, Oct. 2006.

[12] A. McDonald, J. Chung, B.D. Caristrom, C.C. Minh, H. Chafi, C.
Kozyrakis, and K. Olukotun, “Architectural Semantics for Practical
Transactional Memory,” Proc. 33rd Annual Int’l Symp. on Computer
Architecture (ISCA’06), pp.53–65, 2006.

[13] A. Shriraman, S. Dwarkadas, and M.L. Scott, “Flexible Decoupled
Transactional Memory Support,” Proc. 35th Annual Int’l Symp. on
Computer Architecture (ISCA’08), vol.36, no.3, pp.139–150, 2008.

[14] S. Tomić, C. Perfumo, C. Kulkarni, A. Armejach, A. Cristal, O.
Unsal, T. Harris, and M. Valero, “Eazyhtm, Eager-lazy Hardware
Transactional Memory,” Proc. 42nd Annual IEEE/ACM Int’l Symp.
on Microarchitecture (MICRO-42), pp.145–155, 2009.

[15] M. Lupon, G. Magklis, and A. González, “A Dynamically Adaptable
Hardware Transactional Memory,” Proc. 43rd Annual IEEE/ACM
Int’l Symp. on Microarchitecture (MICRO-43), pp.27–38, 2010.

[16] R.M. Yoo and H.-H.S. Lee, “Adaptive Transaction Scheduling for
Transactional Memory Systems,” Proc. 20th Annual Symp. on Par-
allelism in Algorithms and Architectures (SPAA’08), pp.169–178,
June 2008.

[17] G. Blake, R.G. Dreslinski, and T. Mudge, “Bloom Filter Guided
Transaction Scheduling,” Proc. 17th Int’l Conf. on High-Perfor-
mance Computer Architecture (HPCA-17), pp.75–86, 2011.

[18] A. Armejach, A. Negi, A. Cristal, O. Unsal, P. Stenstrom, and T.
Harris, “Harp: Adaptive abort recurrence prediction for hardware
transactional memory,” Proc. 20th Int’l Conf. on High Performance
Computing (HiPC’13), pp.196–205, Dec. 2013.

[19] S. Tomić, E. Akpinar, A. Cristál, O. Unsal, and M. Valero, “A Com-
prehensive Study of Conflict Resolution Policies in Hardware Trans-
actional Memory,” Proc. 6th ACM SIGPLAN Workshop on Trans-
actional Computing (TRANSACT’11), vol.18, pp.270–279, 2013.

[20] J. Bobba, K.E. Moore, H. Volos, L. Yen, M.D. Hill, M.M. Swift, and
D.A. Wood, “Performance Pathologies in Hardware Transactional
Memory,” Proc. 34th Annual Int’l Symp. on Computer Architecture
(ISCA’07), pp.81–91, 2007.

http://dx.doi.org/10.1145/165123.165164
http://dx.doi.org/10.1109/icde.2014.6816683
http://dx.doi.org/10.1109/candar.2015.57
http://dx.doi.org/10.1109/hpca.2006.1598134
http://dx.doi.org/10.1109/2.982916
http://dx.doi.org/10.1145/1105734.1105747
http://dx.doi.org/10.1145/223982.223990
http://dx.doi.org/10.1109/iiswc.2008.4636089
http://dx.doi.org/10.1109/hpca.2003.1183520
http://dx.doi.org/10.1016/j.scico.2006.05.010
http://dx.doi.org/10.1145/1168857.1168902
http://dx.doi.org/10.1109/isca.2006.9
http://dx.doi.org/10.1145/1394608.1382134
http://dx.doi.org/10.1145/1669112.1669132
http://dx.doi.org/10.1109/micro.2010.23
http://dx.doi.org/10.1145/1378533.1378564
http://dx.doi.org/10.1109/hpca.2011.5749718
http://dx.doi.org/10.1109/hipc.2013.6799100
http://dx.doi.org/10.1016/j.procs.2013.05.190
http://dx.doi.org/10.1145/1250662.1250674


2870
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.12 DECEMBER 2016

Keisuke Mashita received his B.E. degree
from Nagoya Institute of Technology in 2015.
Currently, he is a 1st year graduate student in the
Department of Scientific and Engineering Sim-
ulation, Nagoya Institute of Technology, Japan.
His current research interest is computer archi-
tecture. He is a student member of IPSJ.

Maya Tabuchi was admitted to Nagoya In-
stitute of Technology in 2012. Currently, he is
a 4th year undergraduate student in the Depart-
ment of Computer Science, Nagoya Institute of
Technology, Japan. His current research interest
is computer architecture.

Ryohei Yamada received his B.E. degree
from Nagoya Institute of Technology in 2014.
Currently, he is a 2nd year graduate student
in the Department of Scientific and Engineer-
ing Simulation, Nagoya Institute of Technology,
Japan. His current research interest is parallel
processing. He is a student member of IPSJ.

Tomoaki Tsumura received his M.E. and
Ph.D. degree from Kyoto University in 1998 and
2004 respectively. After graduating from the
Ph.D. candidate course of the Graduate School
of Informatics, Kyoto University in 2001, he
joined the university as a research associate. He
joined Toyohashi University of Technology in
2004, and then joined Nagoya Institute of Tech-
nology as an associate professor in 2006. His
current research interests are computer archi-
tecture, applications of parallel processing, and

brain-type information processing. He is a member of ACM, IEEE-CS,
IPSJ and IEICE.


