This is the accepted manuscript of a paper published in
Proc. 3rd Int'l Symp. on Computing and Networking (CANDAR'T5), pp.378-384
Copyright (C) 2015 IEEE

An Approximate Computing Stack
based on Computation Reuse

Yuuki SATO*, Takanori TSUMURA, Tomoaki TSUMURA and Yasuhiko NAKASHIMA

*Nagoya Institute of Technology, Gokiso, Showa, Nagoya, Japan
Email: camp@matlab.nitech.ac.jp
fNara Institute of Science and Technology, 8916-5, Takayama, lkoma, Nara, Japan
Email: nakashim@is.naist.jp

Abstract—Approximate computing has been studied widely is not same as but close to the previous inputs can be an
in computing systems ranging from hardware to software. jmplementation of approximate computing. In other words,
Approximate computing is a paradigm for reducing execution .o mptation reuse which tolerates partial mismatch of in-

time and power consumption by tolerating some quality loss . - - .
in computed results. On the other hand, we have proposed a puts can achieve approximate computing. Thus, approximate

processor called auto-memoization processor which is based oncomputing _and computation reuse are We”_ suited to e&}Ch
computation reuse. The processor dynamically detects functions other. In this paper, we propose an approximate computing

as reusable blocks, and automatically stores their inputs and stack based on computation reuse. The approximate computing
outputs into a lookup table. Then, when the processor detects the stack consists of a programming framework, a compiler, and

same block, the processor compares the current input sequence dified ¢ iz ati Th .
with past input sequences stored in the table. If the current a modified auto-memoization processor. € programming

input sequence matches one of the input sequences in the lookupffamework provides a pragma which allows programmers to
table, the processor writes back the associated outputs, and easily apply approximate computing to various applications,

skips the execution of the function. Here, by tolerating partial gnd the Comp”er encodes the approximation parameters di-

input mismatch in computation reuse, approximate computing rected with the pragma and tell them to the auto-memoization
can be achieved. In this paper, we propose an approximate

computing stack based on computation reuse. The stack includes processor.
a programming framework which allows programmers to easily I B A
apply approximate computing to various applications, a compiler, - BASEARCHITECTURE

and the modified auto-memoization processor. Through an eval- \\e adopted the auto-memoization processor as a platform of

uation with cjpeg from MediaBench, by tolerating partial input yhe annroximate computing stack. In this section, we describe
mismatch in computation reuse, execution cycles are reduced by th ¢ izati d its behavi ’
22.3% in maximum, and reuse rate is improved by 29.5% in € auto-memoization processor and Its behavior.

maximum with negligible quality deterioration in outputs. .
919 quaity P A. The auto-memoization processor

|. INTRODUCTION Computation Reusis a well-known speed-up technique in

Approximate computings a paradigm for reducing ex-the software field. It is storing the input sequences and the
ecution time and power consumption by tolerating sonresults of some computation blocks, such as functions, for later
quality loss in computed results, and it has been studieslse and avoiding recomputing them when the current input
widely ranging from programming languages[1] to hardwargequence matches one of the past input sequences. It is called
implementations[2]. Approximate computing is a promisinghemoizatiof#] to apply computation reuse to computation
paradigm, but there has been no portable framework folocks in programs. Memoization is originally a programming
applying approximate computing to various applications arndchnique for speed-up, and brings good results on expensive
programs yet. functions[5]. However, it requires rewrite of target programs,

On the other hand, we have proposed a processor cal&dl the traditional load-modules or binaries can not benefit
auto-memoization procesg8t which is based on computationfrom memoization. Furthermore, the effectiveness of memo-
reuse. The processor dynamically detects functions as reusakdgion is influenced much by programming styles. Rewriting
blocks, and automatically stores their inputs and outputs inpopograms using memoization occasionally makes the programs
a lookup table. When executing a function, the processor testswer. This is because software implemented memoization
whether the current input sequence matches one of the stotedts considerable overheads.
input sequences on the table. If matches, the processor write®n the other hand, the auto-memoization processor, which
back the associated outputs to the registers and the cacheshave proposed, can execute traditional load-modules faster
and skips the execution of the function. with low overheads and without rewriting a binary program.

Of course, to reuse the previous results, the current inpdise auto-memoization processor dynamically detects func-
must completely match the previous inputs. However, reusitigns as reusable blocks, and memoizes them automatically.
the previous results when the current inputs for a functioh computation block between an instruction with a callee

tsumura
テキストボックス
This is the accepted manuscript of a paper published in
Proc. 3rd Int'l Symp. on Computing and Networking (CANDAR'15), pp.378-384
Copyright (C) 2015 IEEE

Main Core

inpu.t 1int a=3, b=4, c=38;
matching .
L ALU H 2 int calc(x){
MemoBuf 3 int tmp = x + 1;
: e @0
MemoTbl tmp += a;
|_ else tmp += c;

4
5
6
write back 7 return (tmp);
Memoiza@ 8 }
9

engine int main(void){

if (tmp < 7) tmp += b;

input

matching 10 Ca|C(2); I x =2, a=3, b=4 %/
‘ - 11 b =25; calc(2);/* x =2, a=3, b=5 %/
Zj’:,f 12 a = 4; calc(2);/* x =2, a=5, c =8 %/
v D2$ 13 a = 3; calc(2);/x x =2, a=3, b=5 %/
Registers p1s J 14 return (0);
\ J 15 }
Fig. 1. Structure of Auto-Memoization Processor. Fig. 2. A sample code.
| .
: L . =2 H = b=4 End - - -
label and a return instruction is detected as a mem0|zat:| X =3 | L >=] " ()
fL!nction. The brief str_uctL_Jre of the processor is shown i \ b=5 End - - - (i)
Fig.1. The auto-memoization processor consists of the mei
oization engineMemoTbland MemoBuf MemoThbl is a set a=5 c=8 End - - - (ii)
of tables for storing input/output sequences of past executed _ _
computation blocks. MemoBuf works as a write buffer for Fig. 3. Tree of input sequences.

MemoTbl. Entering to a memoizable block, the processor

refers to MemoThbl and compares the current input sequence)
with the past input sequences which are stored in MemoTHIPut sequences for an computation block can be represented

If the current input sequence matches one of the stored ing§t@ Multiway input tree, and the auto-memoization processor

sequences on MemoTbl, the memoization engine writes baiglds input sequences as a tree structure. For exgmp_le, if the

the stored outputs, which are associated with the matched iTE[Rcessor executes the sample program shown in Fig.2, the

sequence, to the registers and the caches. This omits exectffigf Structure of input sequences for the functafc will

of the computation block and reduces total execution time.P€ formed as shown in Fig.3. Each node of the tree represents
If the current input sequence does not match any past in&ﬁ} input value, and each edge represents the address which

sequences, the processor stores the inputs and the out %Jld be referrgd next, arihd repregents th.?. terminal of a
of the computation block into MemoBuf while executing th equence. Each input sequence (i), (ii) and (iii) corresponds to

computation block as usual. The input sequence consists of %tr:un'ctlor: call at line 1.0’ lt apd tlhz respel;tlyely 'r;l Fig.2.
register/memory values which are read over the computati € Input sequences () an ('.')’ € vanaipas read as
S third input, whereas the variabée is read in the input

block, the output ists of the val hich &
OcK, e oUIpU? sequence consists ot the Valles whic equence (iii). This is because the value of variablhich

written, and its return value is also included in the outplft d as th d inout differs f th t inout val

sequence. Reaching the end of the computation block, fﬁe;e‘?h as Esffr?nbmpuh ol frs t_rom tI('a pa53 |r:1pu value,

memoization engine stores the content of MemoBuf infyd the resuit ot the branch instruction at ine 5> changes.
Next, let us see the structure of MemoTbl shown in Fig.4.

MemoThbl for future reuse. X)
MemoBuf has multiple entries, and each MemoBuf entrl;//lemoTbl consists of four tables:
corresponds to one input/output sequence. Each MemoBufLTbl : for start addresses of computation blocks.
entry has a stack pointeSP, a return addressgtOfg, an InTbl :for input data sets of computation blocks.
input sequenceRead, and an output sequence/(ite). Read ~ AddrTbl: for input address sets of computation blocks.
field has addr/reg field which holds input addresses or registefCUtTbl : for output data sets of computation blocks.
IDs, and has value field which holds input values. SimilarlLTbl, AddrTbl, and OutThl are implemented with RAM. On
Write field has addr/reg field which holds output addresses thie other hand, InThl is implemented with a ternary CAM
register IDs, and has value field which holds output values(Content Addressable Memory), for small overhead of input
Now, an input sequence for a certain computation block camatching by associative search. In the following, components
be represented as a sequence of tuples, each of which contafrgach table in MemoTbl are described.
an address and a value. In a certain computation block, theEach FLTbl entry corresponds to a reusable computation
series of input addresses sometimes branch off from edadbck. Each FLTbl entry has the fields which hold the start
other. For example, after a branch instruction, what addrezddress of the computation blockddr).
will be referred next relies on whether the branch was taken orEach InTbl entry has an index for FLTHFI(TbI idx), which
untaken. The result of the branch instruction varies accordingpresents the associated computation block of the input stored
to an input value. Therefore, the universal set of the differeintthe entry, and each InThl entry also holds input valumsu(t

FLTbl InTbl AddrTbl OutThbl .o
FLTbI | parent | input next ec | change | OutTbl FL'll'tl output | output | next IndlcateSOXZOO (b)- Theny the processor SearCheS the entry

O | O pee | ol (el e | [Lol el from InThl whoseparent idxis 00 and input valuesis 3,

[l which is the value read from caches (c). This process is applied
repeatedly until a mismatch of an input value is found (d)(e).
In this example, all input matching for the current input values
succeeds. Therefore, the processor can get the output values
by referring toOutThl idx of the terminal entry (f). Finally,

Index addr

Fig. 4. Structure of MemoThl.

f::ebl addr %_2%‘3.‘ parent| input w Tnest] OutThl Ca'CheJ the processor writes back the output values to the registers and
o e ®) ool 70000 | © the caches. This omits execution of the computation block and
12 020000 2 Lot T oo 1o Josaio]_sa @ s g reduces total execution time.
03| 182 01 | S/X/XIX 1 03 i
el o0 P 0 Jouzmf) @) 00 PO 1. A PPROXIMATE COMPUTING STACK
S — BASED ON COMPUTATION REUSE

Fig. 5. Input matching flow on MemoThbl. In this section, we propose an approximate computing
stack based on computation reuse. The approximate computing
stack consists of a programming framework, a compiler, and

value3. Since each InThl entry can hold single cache line modified auto-memoization processor. The programming
an input sequence over multiple cache lines is stored oritamework provides a pragma for approximate computing, and
InThl by using several entries. When a variable is read as tiie compiler encodes the approximation parameters directed
input value, its whole cache line is stored into an InThl entryith the pragma and tell them to the auto-memoization pro-
masking the other parts than the variable in the cache linessor.
with “don’t care” values of ternary CAM. Each InTbl entry
also holds an index key for its parent entpafent idx.
AddrTbl has the same number of entries as InTbl, and eachn this paper, we propose an approximate computing stack
AddrThbl entry corresponds to the InThl entry which has theased on computation reuse. The stack allows programmers to
same index. Each AddrThl entry has an input address whiehsily apply approximate computing to various applications.
should be tested nexhéxt ad), and a flag éc flag which In this approximate computing stack, we utilize computation
shows whether it is the terminal entry of an input sequence r@use as same as [6]. When the current input for a function
not. Each AddrTbl entry also has a valid point@ufThl id¥, is close to one of the previous inputs, reusing the previous
which refers to an OutThbl entry for associated outputs, wheesults can achieve approximate computing. We implement
the input matching succeeds. this “approximate matching” between previous and the current
Each OutThl entry has FLTbl idx, addressesitput addy inputs by masking some part of inputs. The approximate
and valuesdutput valuelof an output sequence. Each OutTbtomputing stack includes a programming framework which
entry also has an index for next OutThl entrgekt idy allows programmers to easily indicate which input should be
because an output sequence may be stored over multiplasked and which bits of the input should be masked. The
OutTbl entries. computing stack also includes a compiler which encode the
indicated masking parameters into a binary, and the modified
auto-memoization processor which can receive and use the
In this section, we describe the execution mechanism pérameters in the binary.
the auto-memoization processor. Fig.5 shows how the inputHere, we show an example of input masking. In image
sequences shown in Fig.3 are stored into InTbl/AddrTbl. Figdocessing, a pixel value is sometimes used as an input of
also shows an input matching flow on MemoTbl as (a)...(fa function, and when a pixel value is represented in 32 bits,
and this flow corresponds to the function call at line 13 ieach of red(R), green(G), blue(B) elements is usually encoded
Fig.2. Each of0x200, 0x210 and 0x220 in next addr in 8-bit fields as shown in Fig.6. In this figure, the pixel value
corresponds to the variabke b andc in Fig.2 respectively. is 0x006985a4. When a function takes such a pixel value
Here, X in input valuess a don't care nibble in cache line, andas its input, approximate computation reuse can be applied
will not be tested for computation reuse. The entry of InThb the function by masking the input. For example in Fig.6,
whoseparent idxis FF indicates that it is the root node of anthe input value 0x006985a4 is masked with 0x00f0f0f0, and
input sequence tree. only the upper 4-bits of each RGB element are required to
First, the processor reads the values of registers when tiee matched with one of the previous inputs for computation
start address of the functiooalc is detected. Then, thereuse. In other words, differences in the lower 4-bits of
processor searches the root entry whsgent idxis FF each RGB element are ignored in input matching. Hence, if
and whosdnput valuesmatch with the inputs on the currentthe function has been executed with a close input value, or
registers. Now, the entry whose index08 matches and this Ox**6*8*a*, the execution with the input 0x006985a4 can
entry proves to be the root entry (a). Next, the address loé skipped by reusing the past result. If 0x00cOc0cO is used
0x200 is read becauseext addrof the entry00 in AddrTbl instead of 0x00fOf0ofO, more lower bits (6-bits) of each RGB

A. Outline of the Approximate Computing Stack

B. Execution Mechanism

mput | 000 | s , It Sorzaray (nt img. float V)
wpor [ono0 N . oo e imo, float)

& ; & | & ; & s int R, G, B;
mask 4 R = 0.298%img>>16;
value | 0x00 | Oxt0 | 0xf0 | 0xf0 s G = 0.5870:(img&0x0000ff00)>>8;
6 B = 0.1140:img&0x000000ff;
@ 7 return pow(R, y)+pow(G, y)+pow(B, y);
5)
| 0x00 | 0x60 | 0x80 | 0xa0 |

Fig. 6. An example for masking input. Fig. 8. The example of the code which includes a pragma.

Programming
Framework Code The reason why we adopt a pragma is that it is highly
compile extensible and parsing mechanism can be simple. The format
:’ of the pragma is as follows;
N 4 #pragma approx (apgnput, app mask)
 Binary) . :
I— g where approx is the keyword for approximate computa-

insert custom instructions . .
> tion reuse, andapprox takes two argumentapp input and

app_mask The first argumengapp_input is for indicating an

T input variable to which approximate input matching should be
Auto-memoization allowed, and the second argumeayp maskis for a mask
processor “TStore approximate Value. Asapp input, not only the arguments of a function
parameters but also global variables which are read in the function can

- Use approximate parameters when

executing the program be designated. The pragma should be inserted just before

the definition of a function to which approximate computing
Fig. 7. Outline of the approximate computing stack based on computatigpowd be applied. .Flg'8 shows a. sample de? in_which
reuse. a pragma for approximate computation reuse is inserted. In
this code,img one of the input variables of the function
col2gray is designated aspp input, and Ox00fOfOf0 is
are ignored in input matching, and previous results can kg app mask just before the definition otol2gray . By
reused more frequently although some output precision migiing this framework, programmers can flexibly indicate to
be compromised. which function approximate computing should be applied, to
Now, we show the overview of the approximate computinghich input variable approximate computation reuse should
stack in Fig.7. The programming framework, one of thbee applied, and which parts of the input should be ignored in
components of the approximate computing stack we proposgut matching for the computation reuse.
provides a directive for easily indicating inputs which should , o
be masked and mask values. A programmer should fitst COmPiler Specifications
indicate which input should be masked and which part of The approximation parameters indicated with the pragma in
the input should be masked, by using the directive, or tleecode should be transferred to and used by the modified auto-
pragma we will describe in IlI-B. The compiler, anothememoization processor. Therefore, we design a new custom
component of the stack, interprets the pragma into a custamstruction for representing the approximation parameters. The
instruction, and interprets the mask parameters indicated ¢gmpiler interprets a pragma into the custom instruction, and
the pragma into the operands of the instruction. The othencodes approximation parameters directed with the pragma,
component of the stack is the modified auto-memoizati@s the operands of the instruction. Then, the compiler inserts
processor as the hardware platform. The processor decods custom instruction into the first line of the function
the custom instructions, and achieves approximate computiagwhich approximate computing should be applied. When
by applying approximate computation reuse to the indicatée modified auto-memoization processor executes a binary
functions. The following paragraph in this section describeghich is generated by the compiler and a custom instruction
how programmers can use the pragma for indicating maiskdetected, the processor can know that the function now
parameters, how the compiler interprets the pragma, and hbeing executed is the target of approximate computation reuse.
the processor works when executing a binary which includég.9 shows a sample assembly code which is translated from

the custom instructions. the code shown in Fig.8 by the compiler. In this example,
i assume that the input varialilag which should be compared
B. How to Indicate Mask Parameters approximately with the past inputs in computation reuse is

The approximate computing stack provides a pragma forapped to the register r0. In Fig.9, because the function
indicating an input variable and a mask value for the variableol2gray which to be reused approximately is defined from

MemoBuf

1 20000 call . 30000 <col2gray> FLTbI Read Write T || e
2 . idx adds value e value input mask
3 00030000<col2gray>: Ireg Ireg
4 30000 approx r0, 0x00fofofo 0 | 0x006985a4 | r4 | 0x01264589
5 30004 sub sp, sp, #16 col2gray T 0 0x00f0Of0f0
: : T(a) —
6 30008 str rl, [sp, #8]
7 3000c str r2, [sp, #12] : : : : :
8 o ’7
i & (b) i
mask
Fig. 9. An example assembly code with the custom instruction. value | 0x00 I Oxf0 é Oxf0 I Oxf0
0x00 | ox60 | ox80 [oxa0
InTbl AddrTbl
line 5, the compiler inserts the custom instructiapprox LOLLANY] || [t it || o @
. . idx idx values flag addr idx
r0, 0x00fOfofo into line 6. (©)] 00[col2gray | FF 0x00010010 0 | 0x200 | Null
col2gray 00 0x00000001 1 01
. . . i . col2gray 01 0x00020108 1 02
D. Execution Mechanism of the Modified Auto-Memoization coldgray | __FF 0x010a8943 0| 0x240 | Nun
col2gray 03 0x00dc4329 1 0x220 Null
Processor 5| col2gray FF 0xXX6X8XaX 0 02

In this section, we describe how the modified auto-
memoization processor stores inputs into the MemoTbl afAg. 10. How to store an input into modified the auto-memoization processor.
how it searches MemoThbl for the input.

1) Storing an Input into MemoTblin the approximate Ids th . b h f
computing stack, when the modified auto-memoization prB-0 § the register numbed , the processor refers &pprox.

cessor executes the custom instruction, the processor shdllifkfield and applies the mask val@x00f0f0f0 to the
memorize the input which should be compared approximatef¢/ue in the value field which corresponds to the register
with the past inputs, and the processor should also memor2gnPerr0 (Fig.10(a)(b)). As mentioned in section II, each
the mask value for the input. To memorize these approximatidhl °! €ntry holds single cache line and when a variable is
parameters, we installed two new fields in MemoBuf. Th@ad as an input value, its whole cache line is stored into

field approx. inputis for the input which to be Comparedan InTbl entry. When storing a whole cache line mto_an
approximately with past inputs, arabprox. valueis for the InTbl entry, the processor masks other parts than the variable
' i, the cache line with “don’t care” values. Similarly, when

mask value. When executing each custom instruction, t i X) '
approximate computing stack stores an input which to be

auto-memoization processor stores approximation parame q . v with . . bl. th
which are indicated by the operand, into the extended fielg8MPare approximately with past inputs into MemoTbl, the

of MemoBuf stack stores its masked bits of the input variable into MemoTbl
- : . - “don’t care” values (Fig.10(c)).
Fig.10 shows how the modified auto-memoization process%? . g
stores inputs and outputs into MemoTbl. In Fig.10, the upperz) Searching MemoTbl.The search process of the auto-

table illustrates extended MemoBuf, and the lower tablggemoization processor need not to be modified for approx-

illustrate InThl and AddrThl. Incidentally, in Fig.10, values'mat.e computation reuse. Th|s_|s pecause, as mentioned in
%%cnon llI-D2, the auto-memoization processor stores the

stored in input value field are expressed in hexadecimal. Wh . .
P P asked bits as “don’t care” values. When a function is called,

the program shown in Fig.9 is executed and the function | o .
called at line 2, the processor compares the current in auto-memoization processor compares the current input
' ith past inputs in MemoTbl except “don’t care” values of

sequence with past input sequences in MemoTbl. If no p input. In this way, approximate computation reuse is

input sequence matches with the current input sequence, . lemented by the input matching ianorina masked bit
processor executes the instructions of the function from line'8'P y npu INg 1ghanng S Is.

When the processor executes instructions of the function, the
custom instruction described in section IlI-C is detected first, IV. EVALUATION

and the fgnction now beir_lg executed proves to be the targe{ye have evaluated the approximate computing stack from
of approximate computation reuse. Then, when the cusiQfl, viewpoints, its writeability and performance. We also

instruction is executed, the auto-memoization processor stopssasure precision degradation in outputs. We have evaluated
approximation parameters into MemoBuf. In this example, thge approximate computing stack by using cjpeg an image
auto-memoization processor stores the register nunbanto compression program from MediaBench benchmark suite.

approx. inputfield and stores the mask val@00f0f0f0 \we applied approximate computation reuse to the function
into approx. maskield. After executing the custom instructiontynward DCT which is for the guantization.

the processor stores inputs and outputs into MemoBuf while . _ _

executing instructions of the function. When the return instru@- Code Rewriting for Approximate Computing

tion is detected in line 11, the processor stores the contenfig.11 and Fig.12 show how we rewrite around the func-
of MemoBuf into MemoThbl. In Fig.10, because MemoBution forward DCT . Fig.11 shows the original function, and

1 void forward_DCT (JSAMPLE sample ...} 1 void forward_DCT (JSAMPLE sample ...§
2 : 2 :

3 for (i = 0; i < DCTSIZE; i++) { 3 for (i = 0; i < DCTSIZE; i++) {

4 gval = div[il]; 4 out[i] = gq_loop(work[i], div[i]);
5 temp = work[i]; 5 }

6 if (temp< 0) { 6

7 temp =—temp; 7 }

8 temp += qval>>1; 8 #pragma approx (temp, Oxfffffffo)

9 DIVIDE_BY (temp, qval); 9 JCOEF qloop(temp, qval)

10 temp =—temp; 10 if (temp< 0) {

11 } else { 11 temp =—temp;

12 temp += qval>>1; 12 temp += qval>>1;

13 DIVIDE_BY (temp, qval); 13 DIVIDE_BY (temp, qval);

14 } 14 temp =—temp;

15 out[i] = (JCOEF) temp; 15 } else {

temp += qval>>1;
DIVIDE_BY (temp, qval);

6} 16
17 } 17
18}

19 return (JCOEF) temp;
Fig. 11. The original code of forwar@®CT in cjpeg. 2 }

Fig. 12. The code of forwardCT rewritten for approximate computation

Fig.12 shows the corresponding code after rewrite. In the'>®

original function shown in Fig.11, the part from line 7 to

17 takes on quantization process. If a programmer thinks

that the part will be suitable for approximate computing, the
programmer first should cut out the part from the function, ~“MemoBuf
and should define the part as another function. In Fig.12, the MemoTbl CAM
defined functiong_loop is at from line 11 to 22, and the Comparison (register and CAM) 9 cycles/32 Bytes
function is called at line 5 irforward_DCT . In addition, Comparison (Cache and CAM) 10 cycles/32 Bytes

. Write back (MemoThl to register) 1 cycle/32 Bytes
the programmer should insert the pragma staterfpragma Write back (MemoTbl to Cache) 2 cycle/32 Bytes

TABLE |
SIMULATION PARAMETERS.

64 KBytes
128 KBytes

approx(temp, OxfffffffO) to mask the lower 4-bits D1 cache 32 KBytes
of the variabletemp at line 10, for applying approximate line size 32 Bytes
computation reuse ta_loop . With such slight program \lN?yS ‘21W3>|’S
Aot ; ; atency cycles
1 ol
D2 cache 2 MBytes
B. Performance Evaluation U\?ai/s? 1€ 342, V%g;ess
We have measured execution cycles and reuse rates to eval- latency 10 cycles
uate the performance of approximate computation reuse. We __Miss penalty 100 cycles
have developed a single-issue SPARC-V8 simulator equipped Register windows 4 sets
miss penalty 20 cycles/set

with the auto-memoization mechanisms. The simulation pa-
rameters are shown in TABLE I. The cache structure and the
instruction latencies are based on SPARCG64-III[7]. The ons - - . ;

. i . xecution cycles of the original program without computation
chip CAM for InTbl in MemoTbl is modeled on DC18288[8] 4 g prog P

. . ~“Ireuse. Incidentally, rewriting the program may bring some
(32Bytesx 4K lines). The latencies of the CAM are deflne(iunction call overhead. Thus, we evaluated (Q’0) to confirm

on the assumption that the' clock .frequency of the processAk influence due to the function call overhead.
IS about 2 GHz, and is 10-times _hlgher than the_ CAM'_ The legend in Fig.13 shows the breakdown items of total
F|rs_t, F|g.13 shqws the execution cycles of cjpeg with th(‘::‘ycles. They represent the executed instruction cyce®(),
following five configurations; the comparison overhead between CAM and the registers or
(Q) Original program the caches (ead), the overhead for writing back the outputs
(Q'0) Rewritten program shown in Fig.12 from MemoTbl to the registers and the cachesrite’), the
(Q'2) Rewritten program with the lower 2-bits d€mp first-level and shared second-level data cache miss penalties
being masked (‘D$1’, ‘D$2), and the register window miss penaltynfh-
(Q'4) Rewritten program with the lower 4-bits démp dow) respectively. The results of (Q'2)(Q'4), (Q'6) show
being masked that widening the masked bits increasesd andwrite slightly.
(Q'6) Rewritten program with the lower 6-bits d@mp However, widening the masked bits reduesscconsiderably
being masked and improves the overall performance. We also show the
Computation reuse is applied to these all configurations by treuse rates of the functidorward_DCT in TABLE Il. The
auto-memoization processor, and each bar is normalized to thsults show that widening the masked bits also considerably

B cxec 0 read I write
|, (Q:Original program B ps1 B ps2 T window

i ‘ (Q0):Rewritten program
Baseline 1.0-
1 (Q6):Rewritten program
0
TABLE I

shown in Fig.12 (Q'2):Rewritten program
masked the lower 6-bits
REUSERATES OF FUNCTION “FORWARD_DCT.”

masked the lower 4-bits

=

Ratio of cycles
-
B

e
=

o
5

masked ||he lower 2-bits K ‘7

(Q4): itten Program
Fig. 13. Execution cycles.

Q Q0 (Q2 (Q4 (QF)
0.019% 0.029% 51.7% 76.2% 91.1%

improves the reuse rates.

C. Output Precision Fig. 14. Output images.

We also evaluated the deterioration of the output precision. TABLE Il
Fig.14 shows the output images of cjpeg with the configura- SIGNAL-TO-NOISE RATIO (DECIBEL).
tions (Q), (Q'2), (Q’'4) and (Q’'6). As shown in Fig.14, almost
no quality reduction can be confirmed by sight in the outputs Q) (@Q2) (Q4) (Q6)
with (Q'2) and (Q'4). On the other hand, the output with (Q'6) 2720 27.18 27.07 25.48

has slight quality loss, but it will be within the acceptable
range of many applications. We numerically evaluated the _ _ _
deteriorations of the output precision by using SNR (Signdl-can be replaced by a commodity processor equipped with
to-Noise Ratio). We measured the SNR between the input a@d accelerator which includes a simple lookup table, or with a
each output. Results are shown in TABLE IIl. These resulg9ftware library for approximate computation reuse. Providing
give evidence for that the quality loss is very small. various platform options will enhance the portability of this
approximate computing stack.
V. CONCLUSIONS
In this paper, we proposed an approximate computing stack

based on computation reuse. The approximate computiﬂb E. Hadiet al,, “Architecture support for disciplined approximate program-
ming,” in Proc. 17th Int'l Conf. on Architectural Support for Program-

stack co_n_S|sts of a programming framework, a compiler, a_nd ming Languages and Operating Systems (ASPLOSA@), 2012, pp.
the modified auto-memoization processor. The programming 301-312.

framework allows programmers to eas”y app|y approxima{@ G. Vaibhavet al, “Low-pow_er digital signal pro_cessing _using approxi-
mate adders JEEE Transactions on Computer-Aided Design of Integrated

comp_uting to various applica';ions_ by using pragmas, and the Circuits and Systemsol. 32, no. 1, pp. 124-137, Jan. 2013.
compiler encodes the approximation parameters directed Wgh T. Tsumuraet al, “Design and evaluation of an auto-memoization

the pragmas and tell them to the auto-memoization processor.processor,” inProc. Parallel and Distributed Computing and Netwarks
. . . . Feb. 2007, pp. 245-250.
Throth an evaluation with CJpeg from MediaBench, execﬁf'i] P. Norvig, Paradigms of Atrtificial Intelligence Programming Morgan

tion cycles are reduced by 22.3% in maximum, and reuse rate Kaufmann, 1992.

is improved by 29.5% in maximum, with negligible qualityl5] J. Huanget al, “Exploiting basic block value locality with block reuse,’
- e . in Proc. 5th Int'l Symp. on High-Performance Computer Architecture

deterioration in outputs and with slight program modification. 54"y jan. 1999, pp. 106-114.

One of our future works is to investigate a mechanism f@s T. Tsumuraet al, “An evaluation of telerant function reuse on stereo

dynamically adjusting mask values, aiming at achieving both depth extraction,1IPSJ Trans. on Advanced Computing Systerok 44,
no. SIG 11(ACS 3), pp. 246-256, Aug. 2003, (in Japanese).

Fhe_ best performance and Iower_ err.or rate than a thresh SPARCG64-11l User's GuideHAL Computer Systems/Fujitsu, May 1998.
indicated by a programmer. Considering another platform th@n MOSAID Technologies IncFeature Sheet: MOSAID Class-IC DC18288

the auto-memoization processor is also our future work. In this 1st ed., Feb. 2003.
work, we used the modified auto-memoization processor as
the platform for the approximate computing stack. However,

REFERENCES

