
An Approximate Computing Stack
based on Computation Reuse

Yuuki SATO∗, Takanori TSUMURA∗, Tomoaki TSUMURA∗ and Yasuhiko NAKASHIMA†

∗Nagoya Institute of Technology, Gokiso, Showa, Nagoya, Japan
Email: camp@matlab.nitech.ac.jp

†Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, Japan
Email: nakashim@is.naist.jp

Abstract—Approximate computing has been studied widely
in computing systems ranging from hardware to software.
Approximate computing is a paradigm for reducing execution
time and power consumption by tolerating some quality loss
in computed results. On the other hand, we have proposed a
processor called auto-memoization processor which is based on
computation reuse. The processor dynamically detects functions
as reusable blocks, and automatically stores their inputs and
outputs into a lookup table. Then, when the processor detects the
same block, the processor compares the current input sequence
with past input sequences stored in the table. If the current
input sequence matches one of the input sequences in the lookup
table, the processor writes back the associated outputs, and
skips the execution of the function. Here, by tolerating partial
input mismatch in computation reuse, approximate computing
can be achieved. In this paper, we propose an approximate
computing stack based on computation reuse. The stack includes
a programming framework which allows programmers to easily
apply approximate computing to various applications, a compiler,
and the modified auto-memoization processor. Through an eval-
uation with cjpeg from MediaBench, by tolerating partial input
mismatch in computation reuse, execution cycles are reduced by
22.3% in maximum, and reuse rate is improved by 29.5% in
maximum with negligible quality deterioration in outputs.

I. I NTRODUCTION

Approximate computingis a paradigm for reducing ex-
ecution time and power consumption by tolerating some
quality loss in computed results, and it has been studied
widely ranging from programming languages[1] to hardware
implementations[2]. Approximate computing is a promising
paradigm, but there has been no portable framework for
applying approximate computing to various applications and
programs yet.

On the other hand, we have proposed a processor called
auto-memoization processor[3] which is based on computation
reuse. The processor dynamically detects functions as reusable
blocks, and automatically stores their inputs and outputs into
a lookup table. When executing a function, the processor tests
whether the current input sequence matches one of the stored
input sequences on the table. If matches, the processor writes
back the associated outputs to the registers and the caches,
and skips the execution of the function.

Of course, to reuse the previous results, the current inputs
must completely match the previous inputs. However, reusing
the previous results when the current inputs for a function

is not same as but close to the previous inputs can be an
implementation of approximate computing. In other words,
computation reuse which tolerates partial mismatch of in-
puts can achieve approximate computing. Thus, approximate
computing and computation reuse are well suited to each
other. In this paper, we propose an approximate computing
stack based on computation reuse. The approximate computing
stack consists of a programming framework, a compiler, and
a modified auto-memoization processor. The programming
framework provides a pragma which allows programmers to
easily apply approximate computing to various applications,
and the compiler encodes the approximation parameters di-
rected with the pragma and tell them to the auto-memoization
processor.

II. BASE ARCHITECTURE

We adopted the auto-memoization processor as a platform of
the approximate computing stack. In this section, we describe
the auto-memoization processor and its behavior.

A. The auto-memoization processor

Computation Reuseis a well-known speed-up technique in
the software field. It is storing the input sequences and the
results of some computation blocks, such as functions, for later
reuse and avoiding recomputing them when the current input
sequence matches one of the past input sequences. It is called
memoization[4] to apply computation reuse to computation
blocks in programs. Memoization is originally a programming
technique for speed-up, and brings good results on expensive
functions[5]. However, it requires rewrite of target programs,
and the traditional load-modules or binaries can not benefit
from memoization. Furthermore, the effectiveness of memo-
ization is influenced much by programming styles. Rewriting
programs using memoization occasionally makes the programs
slower. This is because software implemented memoization
costs considerable overheads.

On the other hand, the auto-memoization processor, which
we have proposed, can execute traditional load-modules faster
with low overheads and without rewriting a binary program.
The auto-memoization processor dynamically detects func-
tions as reusable blocks, and memoizes them automatically.
A computation block between an instruction with a callee

tsumura
テキストボックス
This is the accepted manuscript of a paper published in
Proc. 3rd Int'l Symp. on Computing and Networking (CANDAR'15), pp.378-384
Copyright (C) 2015 IEEE

Fig. 1. Structure of Auto-Memoization Processor.

label and a return instruction is detected as a memoizable
function. The brief structure of the processor is shown in
Fig.1. The auto-memoization processor consists of the mem-
oization engine,MemoTbland MemoBuf. MemoTbl is a set
of tables for storing input/output sequences of past executed
computation blocks. MemoBuf works as a write buffer for
MemoTbl. Entering to a memoizable block, the processor
refers to MemoTbl and compares the current input sequence
with the past input sequences which are stored in MemoTbl.
If the current input sequence matches one of the stored input
sequences on MemoTbl, the memoization engine writes back
the stored outputs, which are associated with the matched input
sequence, to the registers and the caches. This omits execution
of the computation block and reduces total execution time.

If the current input sequence does not match any past input
sequences, the processor stores the inputs and the outputs
of the computation block into MemoBuf while executing the
computation block as usual. The input sequence consists of the
register/memory values which are read over the computation
block, the output sequence consists of the values which are
written, and its return value is also included in the output
sequence. Reaching the end of the computation block, the
memoization engine stores the content of MemoBuf into
MemoTbl for future reuse.

MemoBuf has multiple entries, and each MemoBuf entry
corresponds to one input/output sequence. Each MemoBuf
entry has a stack pointer (SP), a return address (retOfs), an
input sequence (Read), and an output sequence (Write). Read
field has addr/reg field which holds input addresses or register
IDs, and has value field which holds input values. Similarly,
Write field has addr/reg field which holds output addresses or
register IDs, and has value field which holds output values.

Now, an input sequence for a certain computation block can
be represented as a sequence of tuples, each of which contains
an address and a value. In a certain computation block, the
series of input addresses sometimes branch off from each
other. For example, after a branch instruction, what address
will be referred next relies on whether the branch was taken or
untaken. The result of the branch instruction varies according
to an input value. Therefore, the universal set of the different

1 i n t a = 3 , b = 4 , c = 8 ;
2 i n t c a l c (x){
3 i n t tmp = x + 1 ;
4 tmp += a ;
5 i f (tmp < 7) tmp += b ;
6 e l s e tmp += c ;
7 re turn (tmp) ;
8 }
9 i n t main (vo id){

10 c a l c (2) ; /∗ x = 2 , a = 3 , b = 4 ∗ /
11 b = 5 ; c a l c (2) ; /∗ x = 2 , a = 3 , b = 5 ∗ /
12 a = 4 ; c a l c (2) ; /∗ x = 2 , a = 5 , c = 8 ∗ /
13 a = 3 ; c a l c (2) ; /∗ x = 2 , a = 3 , b = 5 ∗ /
14 re turn (0) ;
15 }

Fig. 2. A sample code.

Fig. 3. Tree of input sequences.

input sequences for an computation block can be represented
as a multiway input tree, and the auto-memoization processor
holds input sequences as a tree structure. For example, if the
processor executes the sample program shown in Fig.2, the
tree structure of input sequences for the functioncalc will
be formed as shown in Fig.3. Each node of the tree represents
an input value, and each edge represents the address which
should be referred next, andEnd represents the terminal of a
sequence. Each input sequence (i), (ii) and (iii) corresponds to
the function call at line 10, 11 and 12 respectively in Fig.2.
In the input sequences (i) and (ii), the variableb is read as
the third input, whereas the variablec is read in the input
sequence (iii). This is because the value of variablea which
is read as the second input differs from the past input value,
and the result of the branch instruction at line 5 changes.

Next, let us see the structure of MemoTbl shown in Fig.4.
MemoTbl consists of four tables:

FLTbl : for start addresses of computation blocks.
InTbl : for input data sets of computation blocks.
AddrTbl : for input address sets of computation blocks.
OutTbl : for output data sets of computation blocks.

FLTbl, AddrTbl, and OutTbl are implemented with RAM. On
the other hand, InTbl is implemented with a ternary CAM
(Content Addressable Memory), for small overhead of input
matching by associative search. In the following, components
of each table in MemoTbl are described.

Each FLTbl entry corresponds to a reusable computation
block. Each FLTbl entry has the fields which hold the start
address of the computation block (addr).

Each InTbl entry has an index for FLTbl (FLTbl idx), which
represents the associated computation block of the input stored
in the entry, and each InTbl entry also holds input values (input

Fig. 4. Structure of MemoTbl.

Fig. 5. Input matching flow on MemoTbl.

values). Since each InTbl entry can hold single cache line,
an input sequence over multiple cache lines is stored onto
InTbl by using several entries. When a variable is read as an
input value, its whole cache line is stored into an InTbl entry,
masking the other parts than the variable in the cache line
with “don’t care” values of ternary CAM. Each InTbl entry
also holds an index key for its parent entry (parent idx).

AddrTbl has the same number of entries as InTbl, and each
AddrTbl entry corresponds to the InTbl entry which has the
same index. Each AddrTbl entry has an input address which
should be tested next (next adr), and a flag (ec flag) which
shows whether it is the terminal entry of an input sequence or
not. Each AddrTbl entry also has a valid pointer (OutTbl idx),
which refers to an OutTbl entry for associated outputs, when
the input matching succeeds.

Each OutTbl entry has FLTbl idx, addresses (output addr)
and values (output values) of an output sequence. Each OutTbl
entry also has an index for next OutTbl entry (next idx)
because an output sequence may be stored over multiple
OutTbl entries.

B. Execution Mechanism

In this section, we describe the execution mechanism of
the auto-memoization processor. Fig.5 shows how the input
sequences shown in Fig.3 are stored into InTbl/AddrTbl. Fig.5
also shows an input matching flow on MemoTbl as (a)...(f),
and this flow corresponds to the function call at line 13 in
Fig.2. Each of0x200 , 0x210 and 0x220 in next addr
corresponds to the variablea, b and c in Fig.2 respectively.
Here,X in input valuesis a don’t care nibble in cache line, and
will not be tested for computation reuse. The entry of InTbl
whoseparent idxis FF indicates that it is the root node of an
input sequence tree.

First, the processor reads the values of registers when the
start address of the functioncalc is detected. Then, the
processor searches the root entry whoseparent idx is FF
and whoseinput valuesmatch with the inputs on the current
registers. Now, the entry whose index is00 matches and this
entry proves to be the root entry (a). Next, the address of
0x200 is read becausenext addrof the entry00 in AddrTbl

indicates0x200 (b). Then, the processor searches the entry
from InTbl whoseparent idx is 00 and input valuesis 3,
which is the value read from caches (c). This process is applied
repeatedly until a mismatch of an input value is found (d)(e).
In this example, all input matching for the current input values
succeeds. Therefore, the processor can get the output values
by referring toOutTbl idx of the terminal entry (f). Finally,
the processor writes back the output values to the registers and
the caches. This omits execution of the computation block and
reduces total execution time.

III. A PPROXIMATE COMPUTING STACK

BASED ON COMPUTATION REUSE

In this section, we propose an approximate computing
stack based on computation reuse. The approximate computing
stack consists of a programming framework, a compiler, and
a modified auto-memoization processor. The programming
framework provides a pragma for approximate computing, and
the compiler encodes the approximation parameters directed
with the pragma and tell them to the auto-memoization pro-
cessor.

A. Outline of the Approximate Computing Stack

In this paper, we propose an approximate computing stack
based on computation reuse. The stack allows programmers to
easily apply approximate computing to various applications.

In this approximate computing stack, we utilize computation
reuse as same as [6]. When the current input for a function
is close to one of the previous inputs, reusing the previous
results can achieve approximate computing. We implement
this “approximate matching” between previous and the current
inputs by masking some part of inputs. The approximate
computing stack includes a programming framework which
allows programmers to easily indicate which input should be
masked and which bits of the input should be masked. The
computing stack also includes a compiler which encode the
indicated masking parameters into a binary, and the modified
auto-memoization processor which can receive and use the
parameters in the binary.

Here, we show an example of input masking. In image
processing, a pixel value is sometimes used as an input of
a function, and when a pixel value is represented in 32 bits,
each of red(R), green(G), blue(B) elements is usually encoded
in 8-bit fields as shown in Fig.6. In this figure, the pixel value
is 0x006985a4. When a function takes such a pixel value
as its input, approximate computation reuse can be applied
to the function by masking the input. For example in Fig.6,
the input value 0x006985a4 is masked with 0x00f0f0f0, and
only the upper 4-bits of each RGB element are required to
be matched with one of the previous inputs for computation
reuse. In other words, differences in the lower 4-bits of
each RGB element are ignored in input matching. Hence, if
the function has been executed with a close input value, or
0x**6*8*a*, the execution with the input 0x006985a4 can
be skipped by reusing the past result. If 0x00c0c0c0 is used
instead of 0x00f0f0f0, more lower bits (6-bits) of each RGB

Fig. 6. An example for masking input.

Fig. 7. Outline of the approximate computing stack based on computation
reuse.

are ignored in input matching, and previous results can be
reused more frequently although some output precision might
be compromised.

Now, we show the overview of the approximate computing
stack in Fig.7. The programming framework, one of the
components of the approximate computing stack we propose,
provides a directive for easily indicating inputs which should
be masked and mask values. A programmer should first
indicate which input should be masked and which part of
the input should be masked, by using the directive, or the
pragma we will describe in III-B. The compiler, another
component of the stack, interprets the pragma into a custom
instruction, and interprets the mask parameters indicated by
the pragma into the operands of the instruction. The other
component of the stack is the modified auto-memoization
processor as the hardware platform. The processor decodes
the custom instructions, and achieves approximate computing
by applying approximate computation reuse to the indicated
functions. The following paragraph in this section describes
how programmers can use the pragma for indicating mask
parameters, how the compiler interprets the pragma, and how
the processor works when executing a binary which includes
the custom instructions.

B. How to Indicate Mask Parameters

The approximate computing stack provides a pragma for
indicating an input variable and a mask value for the variable.

1 #pragma approx (img , 0 x 0 0 f 0 f 0 f 0)
2 i n t c o l 2 g r a y (i n t img , f l o a t y){
3 i n t R, G, B ;
4 R = 0.2989∗ img>>16;
5 G = 0.5870∗ (img&0x0000f f00)>>8;
6 B = 0.1140∗ img&0x000000f f ;
7 re turn pow (R, y) +pow (G, y) +pow (B , y) ;
8 }

Fig. 8. The example of the code which includes a pragma.

The reason why we adopt a pragma is that it is highly
extensible and parsing mechanism can be simple. The format
of the pragma is as follows;

#pragma approx (appinput, app mask)

where approx is the keyword for approximate computa-
tion reuse, andapprox takes two argumentsapp input and
app mask. The first argumentapp input is for indicating an
input variable to which approximate input matching should be
allowed, and the second argumentapp mask is for a mask
value. As app input, not only the arguments of a function
but also global variables which are read in the function can
be designated. The pragma should be inserted just before
the definition of a function to which approximate computing
should be applied. Fig.8 shows a sample code in which
a pragma for approximate computation reuse is inserted. In
this code, img one of the input variables of the function
col2gray is designated asapp input, and 0x00f0f0f0 is
as app mask, just before the definition ofcol2gray . By
using this framework, programmers can flexibly indicate to
which function approximate computing should be applied, to
which input variable approximate computation reuse should
be applied, and which parts of the input should be ignored in
input matching for the computation reuse.

C. Compiler Specifications

The approximation parameters indicated with the pragma in
a code should be transferred to and used by the modified auto-
memoization processor. Therefore, we design a new custom
instruction for representing the approximation parameters. The
compiler interprets a pragma into the custom instruction, and
encodes approximation parameters directed with the pragma,
as the operands of the instruction. Then, the compiler inserts
the custom instruction into the first line of the function
to which approximate computing should be applied. When
the modified auto-memoization processor executes a binary
which is generated by the compiler and a custom instruction
is detected, the processor can know that the function now
being executed is the target of approximate computation reuse.
Fig.9 shows a sample assembly code which is translated from
the code shown in Fig.8 by the compiler. In this example,
assume that the input variableimg which should be compared
approximately with the past inputs in computation reuse is
mapped to the register r0. In Fig.9, because the function
col2gray which to be reused approximately is defined from

1 20000 c a l l 30000 <co l2g ray>
2 :
3 00030000<co l2g ray>:
4 30000 approx r0 , 0 x 0 0 f 0 f 0 f 0
5 30004 sub sp , sp , #16
6 30008 s t r r1 , [sp , #8]
7 3000 c s t r r2 , [sp , #12]
8 :
9 30024 r e t

Fig. 9. An example assembly code with the custom instruction.

line 5, the compiler inserts the custom instructionapprox
r0, 0x00f0f0f0 into line 6.

D. Execution Mechanism of the Modified Auto-Memoization
Processor

In this section, we describe how the modified auto-
memoization processor stores inputs into the MemoTbl and
how it searches MemoTbl for the input.

1) Storing an Input into MemoTbl:In the approximate
computing stack, when the modified auto-memoization pro-
cessor executes the custom instruction, the processor should
memorize the input which should be compared approximately
with the past inputs, and the processor should also memorize
the mask value for the input. To memorize these approximation
parameters, we installed two new fields in MemoBuf. The
field approx. input is for the input which to be compared
approximately with past inputs, andapprox. valueis for the
mask value. When executing each custom instruction, the
auto-memoization processor stores approximation parameters
which are indicated by the operand, into the extended fields
of MemoBuf.

Fig.10 shows how the modified auto-memoization processor
stores inputs and outputs into MemoTbl. In Fig.10, the upper
table illustrates extended MemoBuf, and the lower tables
illustrate InTbl and AddrTbl. Incidentally, in Fig.10, values
stored in input value field are expressed in hexadecimal. When
the program shown in Fig.9 is executed and the function is
called at line 2, the processor compares the current input
sequence with past input sequences in MemoTbl. If no past
input sequence matches with the current input sequence, the
processor executes the instructions of the function from line 5.
When the processor executes instructions of the function, the
custom instruction described in section III-C is detected first,
and the function now being executed proves to be the target
of approximate computation reuse. Then, when the custom
instruction is executed, the auto-memoization processor stores
approximation parameters into MemoBuf. In this example, the
auto-memoization processor stores the register numberr0 into
approx. inputfield and stores the mask value0x00f0f0f0
into approx. maskfield. After executing the custom instruction,
the processor stores inputs and outputs into MemoBuf while
executing instructions of the function. When the return instruc-
tion is detected in line 11, the processor stores the content
of MemoBuf into MemoTbl. In Fig.10, because MemoBuf

Fig. 10. How to store an input into modified the auto-memoization processor.

holds the register numberr0 , the processor refers toapprox.
maskfield and applies the mask value0x00f0f0f0 to the
value in the value field which corresponds to the register
numberr0 (Fig.10(a)(b)). As mentioned in section II, each
InTbl entry holds single cache line and when a variable is
read as an input value, its whole cache line is stored into
an InTbl entry. When storing a whole cache line into an
InTbl entry, the processor masks other parts than the variable
in the cache line with “don’t care” values. Similarly, when
the approximate computing stack stores an input which to be
compared approximately with past inputs into MemoTbl, the
stack stores its masked bits of the input variable into MemoTbl
as “don’t care” values (Fig.10(c)).

2) Searching MemoTbl:The search process of the auto-
memoization processor need not to be modified for approx-
imate computation reuse. This is because, as mentioned in
section III-D2, the auto-memoization processor stores the
masked bits as “don’t care” values. When a function is called,
the auto-memoization processor compares the current input
with past inputs in MemoTbl except “don’t care” values of
the input. In this way, approximate computation reuse is
implemented by the input matching ignoring masked bits.

IV. EVALUATION

We have evaluated the approximate computing stack from
two viewpoints, its writeability and performance. We also
measure precision degradation in outputs. We have evaluated
the approximate computing stack by using cjpeg an image
compression program from MediaBench benchmark suite.
We applied approximate computation reuse to the function
forward_DCT which is for the quantization.

A. Code Rewriting for Approximate Computing

Fig.11 and Fig.12 show how we rewrite around the func-
tion forward_DCT . Fig.11 shows the original function, and

1 vo id forward DCT (JSAMPLE sample . . .){
2 :
3 f o r (i = 0 ; i < DCTSIZE ; i ++) {
4 qva l = d iv [i] ;
5 temp = work [i] ;
6 i f (temp < 0) {
7 temp =−temp ;
8 temp += qval>>1;
9 DIVIDE BY (temp , qva l) ;

10 temp =−temp ;
11 } e l s e {
12 temp += qval>>1;
13 DIVIDE BY (temp , qva l) ;
14 }
15 ou t [i] = (JCOEF) temp ;
16 }
17 }

Fig. 11. The original code of forwardDCT in cjpeg.

Fig.12 shows the corresponding code after rewrite. In the
original function shown in Fig.11, the part from line 7 to
17 takes on quantization process. If a programmer thinks
that the part will be suitable for approximate computing, the
programmer first should cut out the part from the function,
and should define the part as another function. In Fig.12, the
defined functionq_loop is at from line 11 to 22, and the
function is called at line 5 inforward_DCT . In addition,
the programmer should insert the pragma statement#pragma
approx(temp, 0xfffffff0) to mask the lower 4-bits
of the variabletemp at line 10, for applying approximate
computation reuse toq_loop . With such slight program
modification, programmers can apply approximate computing
to the appropriate part of the code.

B. Performance Evaluation

We have measured execution cycles and reuse rates to eval-
uate the performance of approximate computation reuse. We
have developed a single-issue SPARC-V8 simulator equipped
with the auto-memoization mechanisms. The simulation pa-
rameters are shown in TABLE I. The cache structure and the
instruction latencies are based on SPARC64-III[7]. The on-
chip CAM for InTbl in MemoTbl is modeled on DC18288[8]
(32Bytes× 4K lines). The latencies of the CAM are defined
on the assumption that the clock frequency of the processor
is about 2 GHz, and is 10-times higher than the CAM.

First, Fig.13 shows the execution cycles of cjpeg with the
following five configurations;

(Q) Original program
(Q’0) Rewritten program shown in Fig.12
(Q’2) Rewritten program with the lower 2-bits oftemp

being masked
(Q’4) Rewritten program with the lower 4-bits oftemp

being masked
(Q’6) Rewritten program with the lower 6-bits oftemp

being masked

Computation reuse is applied to these all configurations by the
auto-memoization processor, and each bar is normalized to the

1 vo id forward DCT (JSAMPLE sample . . .){
2 :
3 f o r (i = 0 ; i < DCTSIZE ; i ++) {
4 ou t [i] = q loop (work [i] , d i v [i]) ;
5 }
6 :
7 }
8 #pragma approx (temp , 0 x f f f f f f f 0)
9 JCOEF q loop (temp , qva l){

10 i f (temp < 0) {
11 temp =−temp ;
12 temp += qval>>1;
13 DIVIDE BY (temp , qva l) ;
14 temp =−temp ;
15 } e l s e {
16 temp += qval>>1;
17 DIVIDE BY (temp , qva l) ;
18 }
19 re turn (JCOEF) temp ;
20 }

Fig. 12. The code of forwardDCT rewritten for approximate computation
reuse.

TABLE I
SIMULATION PARAMETERS.

MemoBuf 64 KBytes
MemoTbl CAM 128 KBytes
Comparison (register and CAM) 9 cycles/32 Bytes
Comparison (Cache and CAM) 10 cycles/32 Bytes
Write back (MemoTbl to register) 1 cycle/32 Bytes
Write back (MemoTbl to Cache) 2 cycle/32 Bytes
D1 cache 32 KBytes

line size 32 Bytes
ways 4 ways
latency 2 cycles
miss penalty 10 cycles

D2 cache 2 MBytes
line size 32 Bytes
ways 4 ways
latency 10 cycles
miss penalty 100 cycles

Register windows 4 sets
miss penalty 20 cycles/set

execution cycles of the original program without computation
reuse. Incidentally, rewriting the program may bring some
function call overhead. Thus, we evaluated (Q’0) to confirm
the influence due to the function call overhead.

The legend in Fig.13 shows the breakdown items of total
cycles. They represent the executed instruction cycles (‘exec’),
the comparison overhead between CAM and the registers or
the caches (‘read’), the overhead for writing back the outputs
from MemoTbl to the registers and the caches (‘write’), the
first-level and shared second-level data cache miss penalties
(‘D$1’, ‘ D$2’), and the register window miss penalty (‘win-
dow’) respectively. The results of (Q’2)，(Q’4)，(Q’6) show
that widening the masked bits increasesreadandwrite slightly.
However, widening the masked bits reducesexecconsiderably
and improves the overall performance. We also show the
reuse rates of the functionforward_DCT in TABLE II. The
results show that widening the masked bits also considerably

Fig. 13. Execution cycles.

TABLE II
REUSERATES OFFUNCTION “ FORWARD DCT.”

(Q) (Q’0) (Q’2) (Q’4) (Q’6)
0.019% 0.029% 51.7% 76.2% 91.1%

improves the reuse rates.

C. Output Precision

We also evaluated the deterioration of the output precision.
Fig.14 shows the output images of cjpeg with the configura-
tions (Q), (Q’2), (Q’4) and (Q’6). As shown in Fig.14, almost
no quality reduction can be confirmed by sight in the outputs
with (Q’2) and (Q’4). On the other hand, the output with (Q’6)
has slight quality loss, but it will be within the acceptable
range of many applications. We numerically evaluated the
deteriorations of the output precision by using SNR (Signal-
to-Noise Ratio). We measured the SNR between the input and
each output. Results are shown in TABLE III. These results
give evidence for that the quality loss is very small.

V. CONCLUSIONS

In this paper, we proposed an approximate computing stack
based on computation reuse. The approximate computing
stack consists of a programming framework, a compiler, and
the modified auto-memoization processor. The programming
framework allows programmers to easily apply approximate
computing to various applications by using pragmas, and the
compiler encodes the approximation parameters directed with
the pragmas and tell them to the auto-memoization processor.
Through an evaluation with cjpeg from MediaBench, execu-
tion cycles are reduced by 22.3% in maximum, and reuse rate
is improved by 29.5% in maximum, with negligible quality
deterioration in outputs and with slight program modification.
One of our future works is to investigate a mechanism for
dynamically adjusting mask values, aiming at achieving both
the best performance and lower error rate than a threshold
indicated by a programmer. Considering another platform than
the auto-memoization processor is also our future work. In this
work, we used the modified auto-memoization processor as
the platform for the approximate computing stack. However,

Fig. 14. Output images.

TABLE III
SIGNAL -TO-NOISE RATIO (DECIBEL).

(Q) (Q’2) (Q’4) (Q’6)
27.20 27.18 27.07 25.48

it can be replaced by a commodity processor equipped with
an accelerator which includes a simple lookup table, or with a
software library for approximate computation reuse. Providing
various platform options will enhance the portability of this
approximate computing stack.

REFERENCES

[1] E. Hadiet al., “Architecture support for disciplined approximate program-
ming,” in Proc. 17th Int’l Conf. on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS’12), Apr. 2012, pp.
301–312.

[2] G. Vaibhavet al., “Low-power digital signal processing using approxi-
mate adders,”IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 32, no. 1, pp. 124–137, Jan. 2013.

[3] T. Tsumura et al., “Design and evaluation of an auto-memoization
processor,” inProc. Parallel and Distributed Computing and Networks,
Feb. 2007, pp. 245–250.

[4] P. Norvig, Paradigms of Artificial Intelligence Programming. Morgan
Kaufmann, 1992.

[5] J. Huanget al., “Exploiting basic block value locality with block reuse,”
in Proc. 5th Int’l Symp. on High-Performance Computer Architecture
(HPCA-5), Jan. 1999, pp. 106–114.

[6] T. Tsumuraet al., “An evaluation of telerant function reuse on stereo
depth extraction,”IPSJ Trans. on Advanced Computing Systems, vol. 44,
no. SIG 11(ACS 3), pp. 246–256, Aug. 2003, (in Japanese).

[7] SPARC64-III User’s Guide, HAL Computer Systems/Fujitsu, May 1998.
[8] MOSAID Technologies Inc.,Feature Sheet: MOSAID Class-IC DC18288,

1st ed., Feb. 2003.

