This is the accepted manuscript of a paper published in
Proc. 3rd Int'l Symp. on Computing and Networking (CANDAR'T5), pp.400-403
Copyright (C) 2015 IEEE

Yet Another Waiting Mechanism
based on Conflict Prediction
for Hardware Transactional Memory

Keisuke MASHITA", Sho MIYAKE*, Ryohei YAMADA* and Tomoaki TSUMURA
*Nagoya Institute of Technology
Gokiso, Showa, Nagoya, Japan
Email: camp@matlab.nitech.ac.jp

Abstract—Transactional Memory (TM) has been proposed and Corel Core2 Core3
studied for lock-free synchronization. On TMs, transactions are thr. thr2 thr3
executed speculatively in parallel as long as they do not encounter ¥
any conflicts on shared variables. On general HTMs: hardware load B
implementations of TM, transactions which have conflicted once 1oad A 1oad C Tx.Z
each other will conflict repeatedly if they will be executed again possible cycle Req.A [store
in parallel, and the performance of HTM will be declined. r; -

To address this problem, in this paper, we propose a conflict %
prediction to avoid conflicts in advance based on historical data ﬂ Store€
of conflicts. The result of the experiment shows that the execution 4 A o0
time of HTM is reduced 63.5% in maximum, and 19.6% in store e
average with 16 threads. 5 ;13":7/1\’“‘; 7
or Reg. w
I. INTRODUCTION ";ﬂ; 7
. Ack . store A 7

Transactional Memqry(TM) [1] has been proposed as a Restart Comﬂg
lock-free synchronization mechanism. On TMs, transactions Ky -
are executed speculatively as long as they do not encounter \ store C

Commit

any conflicts on shared variables. ®Glardware Transactional
Memories(HTMs), which are the hardware implementations
of TM, the mechanisms for version management and conflict Fig. 1. Conflict resolution on a general HTM.
detection are implemented in hardware.

On general HTMs, transactions, which have conflicted on)
a shared variable once each other, will conflict repeatedly 6HM Systems. In this examplethr.l executesTx.X thr.2
the same shared variable if they will be executed in paral@¥ecutesx.Y, andthr.3 executesx.Z Now, assume thathr.1
again. This conflict repetition will bring severe performancB@s issuedoad A andthr2 has issuedoad B andload
degradation of HTMs. To address this problem, in this pap&, First, whenthr.2 tries to issuestore A (attl), a conflict
we propose a conflict prediction to avoid such a confliét detected becausir.l has already accessed to address A
in advance. Before a thread starts to execute a transactig®): N this case, ashr.2 receives aNack from thr.1, thr.2
the thread predicts future conflicts based on historical dag@!ls Tx.Y, waiting forthr.1 to commit (3). To avoid causing
including past conflicted pairs and temporal data about trarfigadlock,thr.l also sets a flag callegossible cycle After
actions. Thereby, the thread can avoid causing a conflict wiIft: whenthr.3 tries to issuestore C , another conflict is

transactions being executed by other threads. detected becaughr.2 has already accessed to address C. In
this casethr.3 receives dNackfrom thr.2, andthr.3 stallsTx.Z
[1. A CONFLICT PREDICTION waiting for thr.2 to commit ¢4). Afterwards, wherthr.1 tries

out a problem of general HTMs. After that, we propose Ras already accessed to the address B. In this caséy.hs
conflict prediction to address the problem. has setpossible cycldlag, thr.1 abortsTx.X (t5). As a result,

thr.1 andthr.2 can avoid deadlock.
A. Conflict Detection and Resolution of the General HTM

TM must resolve conflicts, because it executes transacti(ﬁlsAVO'dmg Conflicts by a Conflict Prediction

speculatively. Here, Fig.1 shows an example where conflictsAs mentioned in section II-A, threads can resolve conflict.
are detected with LogTM [2] which is one of the most generdowever, transactions which have conflicted once each other

tsumura
テキストボックス
This is the accepted manuscript of a paper published in
Proc. 3rd Int'l Symp. on Computing and Networking (CANDAR'15), pp.400-403
Copyright (C) 2015 IEEE

Corel Core2

Corel Core2 Core3
Conflict | thrl thr.2 thr.3 thr.1 thr2
(Prediction Tx.Y u Tx.X DX
u ———— Conflict
Tex 1Dy || DY - ctore A vy
Info

‘ Check Waiting Waiting Check
| Maiting 2

Commit t4
5 f—Commitied Commiied™ There is no Tl

opponent

There is no A
transaction

opponent
transaction

Commit

Req.A store A
I

auin

Commit
Commit

auiy

Fig. 3. A conflict prediction by using opponent transaction IDs and temporal
data of a transaction.
Fig. 2. How to predict conflicts.

how long the whole execution time of the transaction is, and

tend to conflict repeatedly because their execution paths do fif other is how much time later a conflict will be caused than
change and the threads access to the same shared varighlle$ransaction starts.
when they are executed again. To address this problem, inyere Fig.3 shows an example where a thread does not
this paper, we propose a conflict prediction for avoidingastefully wait when the thread predicts a conflict. Assume
conflicts before a thread executes a transaction based (g8 thr.2 has historical data used for conflict prediction. First,
historical data of conflicts. Before starting a transaction, i1 sends the transaction IDX* to all the other threads
thread predicts whether a conflict will be caused or not duriRghen thr.1 starts to executdx.X (t1). On the other hand,
the transaction, by referring to historical data. If the thregfl, > remembers the transaction I In order to predict a
predicts that a conflict will be caused, the thread waits for tr&%nﬂict' thr.2 sends a request for inquiring the remaining time
opponent thread to commit without starting the transaction. A$ti| the commit of the opponent transaction to each opponent
mentioned in section II-A, stall is also a ‘waiting’ mechanismyead {2). After that, thr.2 comparesT1 the remaining time
for conflict resolution. In contrast to stall, a thread does ngf Tx x sent back fronthr.1 with T2 the remaining time until
cause a new conflict with this conflict prediction, because thgs conflict will be caused betwedix.X and Tx.Y (t3). In this
thread waits without accessing any addresses. case, asT2 is shorter tharl1, thr.2 waits for being allowed

Fig.2 shows an example where threads try to execyexecuteTx.Y and sends &Vaitingmessage tohr.1. After a
same transactions as Fig.1 and can avoid conflicts by confu\gq”e, whenT1becomes shorter thaf®, thr.1 sends aVakeup
predictions. Assume thax.Y has already conflicted withx.X message tehr.2 for promptingthr.2 to execute its transaction
andTx.Z and each thread remembers it. Fitht,2 sends the 14y whenthr.2 receives thisNakeupmessagethr.2 starts to
transaction ID Y' to all the other threads whethr.2 starts gyacyteTx.Y. In this way, thr.2 can avoid causing a conflict
to executeTx.Y (t1). Receiving thisthr.1 andthr.3 remember \ith the minimum waiting time. To implement this conflict
the transaction IDY." After that, thr.1 tries to executeTx.X prediction, we define two messageshaiting and aWakeup

while Tx.Y is running onthr2. At this time, thr.1 predicts op the coherence protocol for accurate conflict prediction.
whetherTx. X will conflict with a transaction which is running

on another thread or not by referring to historical data of 1. | MPLEMENTATION
conflicts ¢2). As a result,thr.1 knows thatTx.X has already
conflicted withTx.Y running onthr.2, thr.1 predicts thathr.1
will conflict with thr.2. Therefore,thr.1 waits for thr.2 to
commitTx.Y. Therebythr.1 sends aVaiting message tohr.2.
In the same waythr.3 predicts thathr.3 will conflict with thr.2
beforethr.3 starts to executdx.Z (t3). Hence,thr.3 waits for
thr.2 to commit, and it sends Waiting message tthr.2. After To implement the conflict prediction described in section
thr.2 commitsTx.Y, thr.2 sends £ommittedmessage tohr.1 11-C, we have installed five hardware units in each core.
and thr.3 (t4). Whenthr.1 and thr.3 receive thisCommitted For achieving the conflict prediction, some temporal data

In this section, we describe additional hardware units re-
quired for implementing the conflict prediction on HTM and
how threads execute their transactions.

A. Additional Hardware Units

message, they start to execute transactiths (of transactions should be managed and used as parameters.
o)) . N _ However, the temporal data such as whole execution time of a
C. Avoiding Conflicts with Minimum Waiting Time transaction will vary at each execution because of cache misses

To avoid conflicts with minimum waiting time, we adoptecr stalls. Hence, we use the number of memory accesses as
additional two temporal data about each transaction. Oneais approximation of execution time. For a 16-core processor,

Corel Core2 Corel Core2 Store the remaining time until thr1

Core 1 A
thr.l thr.2 HETAble thr.1 thr.2 allows thr.2 to execute a transaction (t4)
Tx.X oy ’ IxX ID.X
2 . .
A-Counter T-Table A-Counter [1] T-Table
af 2ot VG e — toad o T
“Table
o load B 2 Req.Info Check e N
O-Table Ji -Tabl

. Load A 3\ | | ‘ | ‘ 3 nfo 3 O-Table
t. } 4 load C Waiting | | ‘ ‘ |
4| load C Store the time until 15| storeA Wakeup l—l—Lu

store Req.A the conflict (t7) 16
P Core2 W-Table

0—1 (t3)
load B | Core 2 1-0 (t6) Jrable

17 Nack
O-Counter - 1 ----
8 store B I:l load A O-Counter
19 The value of W-Table is
Commit A-Counter T-Table negative A-Counter [l T-Table
Count (t2)(t3)(t8 f I [[I | Y | 7 |
c C-Table (4[] |

“Table[Store execution time 3
L ofTxy9) F‘—l
O-Table

1 L—— 2

Compare the time remaining unti
the commit of rAr.1 with the time
remaining until the conflict
between 7x.X and Tx.Y (t3)

Fig. 5. How to predict and avoid conflicts.

aui

autyy

Fi

g. 4. How to remember historical data of conflicts.

the total size of the additional hardware units is estimated at
11.8 Kbytes. time and gets the value ‘3, by subtracting ‘1’ the value of its
L . A-Counterfrom ‘4’ the execution time which is remembered

B. HOV_/ 0 Remember H.|st0r|caI-Data of Conflicts on C-Table Receiving X' as the transaction ID ofhr.1 and

In this section, we will describe how threads remembefie calculated answer ‘3’ frorthr.1, thr.2 predicts whether
historical data for predicting conflicts. Here, Fig.4 illustrateg conflict will be caused or not by referring to the saved
an example. FirsCorelincrements the value of its-Counter hjstorical data. In this exampléhr.2 checks whetherY' is
for remembering the number of memory accesses, viheh stored as one of the opponent transactiomefX on C-Table
issuesload A (t1). Similarly, Core2 increments the value or not, and compares the time remaining until the commit of
of its A-Counterwhenthr.2 issuedoad B (t2) andload A Tx X and the time remaining until the conflict betwe®r.X
(t3). After thr.1issuedoad C (t4), thr.1tries to issuestore and Tx.Y. If the time remaining until the commit ofx.X is
A (t5) and a conflict is detectedd) becauséhr.2 has already shorter than the time remaining until the conflict betw@erX
accessed to the address A. In this cabel receives aNack gnd Tx.Y, thr.2 can start to executd@x.Y. In this case, the
from thr2, and stallsTx.X (t7). At the time, asthr.1 receives time until the commit ofthr.1 is longer than the time until
the Nack Corelincrements the value of itd-Counter and the conflict betweenTx.X and Tx.Y. Therefore,thr.2 waits
copies the value tC-Table In this example,Corel stores to start Tx.Y (t3). As thr.2 predicts that a conflict will be
3" on C-Table as the approximate value representing theausedthr.2 stores ‘1’ as the number of opponent threads on
time from the start offx.Xto the conflict betweelmx.Xand o-Counter and sends aVaiting message, which piggybacks
Tx.Y.In this way, Corelremembers h'istorical data about thighe time remaining until the conflict betwedm. X andTx.Y, to
conflict on C-Table After that, thr.2 issuesstore B and thr.1, whenthr.1 receives thidNaitingmessagethr.1 subtracts
Core2increments the value of it8-Counter(t8). Finally, the the time remaining until the conflict betwedix.X and Tx.Y
value of itsA-Counteris copied toT-Tableas the approximate from the time remaining until the commiEx.X (t4). As a
total execution time offx.Y, whenthr.2 commitsTx.Y (tg) result, Corel stores ‘1’ on W-Table as the remaining time
C. How to Predict and Avoid Conflicts until thr.1 allowsthr.2 to execute a}transaction'. Afterwards, the

) . i i . value of W-Tablebecomes negative whehr.1 issuesstore

In this section, we will describe how a thread predicts & 5) Therefore,thr.1 sends aWakeupmessage tdahr.2 for
future conflict and avoid it. Here, Fig.5 shows an exampl&,mptingthr.2 to startTx.Y. Receiving thisNakeupmessage,
where a thread predicts that a conflict will be caused. In Fig.8e2 decrements the value of i®-Counter At this time
assume that each dfir.1 andthr.2 remembers its executionthr_z startsTx.Y because the value @-Counterbecomes O

time and th_e time _un_til the_ conflict betwedrx.X and XY andthr.2 knows that no opponent transaction is runnit@).
for the conflict prediction. Firsthr.1 sends the transaction 1D

‘X' to all the other threads whethr.1 starts to execut&x.X IV. PERFORMANCEEVALUATION

(t1). Core2stores the IDX' sent fromthr.1 on O-Table After |n this section, we describe the evaluation results.

that, thr.2 sends a request for inquiring the remaining time))

until the commit of the transaction to each opponent thredy Evaluation Environment

stored onO-Table in order to predict whethr.2 should start ~ We used a full-system execution-driven functional simulator
TX.Y (t2). Receiving this requedtr.1 calculates the remaining Wind River Simid8] in conjunction with customized memory

TABLE | . .
SIMULATION PARAMETERS and 19.6% in average with 16 threads. Next, we go to the

detailed examination of these results in the following.

Processor SPARC V9|| Memory 8 GBytes ; ; ;
#cores 32 cores latency 450 cycles C. Detailed Examination
clock i 1 C-;HzI Interconnect fatency 14 cycles As shown in Fig.6, the performance of many programs is
issue widt single
issue order in-order improved with (P1) and (P2). Especiallyait with (P2) is
non-memory IPC 1 smaller than (P1). However, performance of some programs
D1 cache 32 KBytes D2 cache 8 MBytes with (P1) is better than (P2). To investigate the origin of this
ways 4 ways ways 8 ways ; ; ; [
latency 1 cycle latency 20 cycles result, we examined these programs in detail, and it is found

that the number of memory accesses tends to change in these
programs, because the execution path varies due to branch

(B) LogTM (Baseline)

(P1) HTM with the proposed conflict prediction only by using opponent instructions. Hence, with (P2), conflict predictions sometimes
. (P5) EETM th the proposed conflit prediction by using fail and Conflict ovh of some programs are larger than with
opponent transaction IDs and temporal data about transactions (Pl) HOWGVEI‘, Contentlon a.nd Raytra.ce ha.Ve transaCtIOI’IS
— whose number of memory accesses does not change. There-

menaon fOre, the conflict prediction in (P2) is more accurate than
gewn (P1) because it uses temporal data of transactions, and the
performance of (P2) outperforms that of (P1).

Ratio of cycles

[Non_trans
V. CONCLUSIONS
In this paper, we propose a conflict prediction for HTM
" \Buee Contention _Deque _Prioqueue , Bames _Raytrace , Vacition to avoid conflicts in advance. When a thread predicts that a
GEMS microbench SPLASH-2 STAMP conflict will be caused, it waits for being allowed to start its
Fig. 6. Execution cycles ratio. transaction to avoid the conflict. We have evaluated HTM with

the conflict prediction by comparing with LogTM, through
experiments with GEMS microbench, SPLASH-2 benchmark
simulators built onwisconsin GEMS4] for evaluation. The Suite, and STAMP benchmark suite. The evaluation results

detailed configuration of the simulated processor is sho®RoW that HTM with the conflict prediction decreases the total
in TABLE I. We have evaluated the execution cycles of gxecution cycles 63.5% in maximum, and 19.6% in average
workloads from GEMS microbench, SPLASH-2 benchma¥ith 16 threads. However, the conflict prediction sometimes

suite [5], and STAMP benchmark suite [6] with 16 threads.fails if a transaction includes branch instructions and its
execution path changes. Thereby, a conflict may be caused

B. Evaluation Results or a thread may wait wastefully. Therefore, one of our future

)) _ works is to improve the prediction accuracy by considering
The evaluation results with following three HTMs are show{),iation of execution paths in transactions.

in Fig.6.

(B) LogTM (baseline) _ ACKNO_W'-EDGMENT
(P1) HTM with the proposed conflict prediction only by This research was partially supported by the grant from the
using opponent transaction IDs Tatematsu Foundation.

(P2) HTM with the proposed conflict prediction by using
opponent transaction IDs and temporal data
[1] M. Herlihy et al, “Transactional Memory: Architectural Support for

Fig.6 shows the execution cycles of each HTM. Each bar |ock-Free Data Structures” ifProc. 20th Intl Symp. on Computer
is normalized to the total execution cycles of the baseline] Architecture (ISCAI’93)May- 1993, pbp- 2%9—300- |
; ; i ; _ K. E. Moore et al, “LogTM: Log-based Transactional Memory,” in
(B) For SImUIatmg multi threaqed, ,execu“on on a full S,ySterR Proc. 12th Intl Symp. on High-Performance Computer Architecture
simulator, the performance variability [7] must be considered. (pca06) Feb. 2006, pp. 254-265.
Hence, we tried 10 times on each benchmark, and measui®dP. S. Magnussomt al, “Simics: A Full System Simulation Platform,”

95% confidence interval. The confidence intervals are illug; Computer vol. 35, no. 2, pp. 50-58, Feb. 2002.

REFERENCES

. L. M. M. K. Martin et al, “Multifacet’'s General Execution-driven Multi-
trated as error bars in this figure. processor Simulator (GEMS) ToolseCM SIGARCH Computer Archi-
The legend shows the breakdown items of the total cg/- tSectéreVl:lleWS\tlol.l?:B,Tﬂo. g’PFE& S9>|42|—299F,)Se‘p- 2005(-:h erivat J
. . . . oo et al, “The - rograms: aracterization an
cles. They represent th_e execu“or_] cycles out of_transacp SMethodological Considerations,” ifroc. 22nd Int'l. Symp. on Computer
(Non_trans), the execution cycles in the transactions which Architecture (ISCA'95)1995, pp. 24-36.
are committed Good trans), the execution cycles of conflict[6] C. C. Minh et al, “STAMP: Stanford Transactional Applications for

- . e - Multi-Processing,” inProc. IEEE Int'l Symp. on Workload Characteri-
resoluhqn Conflict ovh), the waltlng cycle§ pefore starting _ion (IISWC'08) Sep. 2008.

transactions by the proposed conflict predictigvaf). [7]1 A. R. Alameldeenet al, “Variability in Architectural Simulations

As a result of the evaluation, HTM with the conflict pre- ©f Multi-Threaded Workloads,” inProc. 9th Intl Symp. on High-

" - . - Performance Computer Architecture (HPCA’ b. 2003, pp. 7-18.
diction (P2) reduces the execution cycles 63.5% in maximum, P (0%e PP

