
Yet Another Waiting Mechanism
based on Conflict Prediction

for Hardware Transactional Memory
Keisuke MASHITA∗, Sho MIYAKE∗, Ryohei YAMADA∗ and Tomoaki TSUMURA∗

∗Nagoya Institute of Technology
Gokiso, Showa, Nagoya, Japan

Email: camp@matlab.nitech.ac.jp

Abstract—Transactional Memory (TM) has been proposed and
studied for lock-free synchronization. On TMs, transactions are
executed speculatively in parallel as long as they do not encounter
any conflicts on shared variables. On general HTMs: hardware
implementations of TM, transactions which have conflicted once
each other will conflict repeatedly if they will be executed again
in parallel, and the performance of HTM will be declined.
To address this problem, in this paper, we propose a conflict
prediction to avoid conflicts in advance based on historical data
of conflicts. The result of the experiment shows that the execution
time of HTM is reduced 63.5% in maximum, and 19.6% in
average with 16 threads.

I. I NTRODUCTION

Transactional Memory(TM) [1] has been proposed as a
lock-free synchronization mechanism. On TMs, transactions
are executed speculatively as long as they do not encounter
any conflicts on shared variables. OnHardware Transactional
Memories(HTMs), which are the hardware implementations
of TM, the mechanisms for version management and conflict
detection are implemented in hardware.

On general HTMs, transactions, which have conflicted on
a shared variable once each other, will conflict repeatedly on
the same shared variable if they will be executed in parallel
again. This conflict repetition will bring severe performance
degradation of HTMs. To address this problem, in this paper,
we propose a conflict prediction to avoid such a conflict
in advance. Before a thread starts to execute a transaction,
the thread predicts future conflicts based on historical data,
including past conflicted pairs and temporal data about trans-
actions. Thereby, the thread can avoid causing a conflict with
transactions being executed by other threads.

II. A C ONFLICT PREDICTION

In this section, we describe overviews of HTM, and point
out a problem of general HTMs. After that, we propose a
conflict prediction to address the problem.

A. Conflict Detection and Resolution of the General HTM

TM must resolve conflicts, because it executes transactions
speculatively. Here, Fig.1 shows an example where conflicts
are detected with LogTM [2] which is one of the most general

Fig. 1. Conflict resolution on a general HTM.

HTM systems. In this example,thr.1 executesTx.X, thr.2
executesTx.Y, andthr.3 executesTx.Z. Now, assume that,thr.1
has issuedload A and thr.2 has issuedload B and load
C. First, whenthr.2 tries to issuestore A (at t1), a conflict
is detected becausethr.1 has already accessed to address A
(t2). In this case, asthr.2 receives aNack from thr.1, thr.2
stallsTx.Y, waiting for thr.1 to commit (t3). To avoid causing
deadlock,thr.1 also sets a flag calledpossible cycle. After
that, whenthr.3 tries to issuestore C , another conflict is
detected becausethr.2 has already accessed to address C. In
this case,thr.3 receives aNackfrom thr.2, andthr.3 stallsTx.Z,
waiting for thr.2 to commit (t4). Afterwards, whenthr.1 tries
to issuestore B , another conflict is detected becausethr.2
has already accessed to the address B. In this case, asthr.1
has setpossible cycleflag, thr.1 abortsTx.X (t5). As a result,
thr.1 and thr.2 can avoid deadlock.

B. Avoiding Conflicts by a Conflict Prediction

As mentioned in section II-A, threads can resolve conflict.
However, transactions which have conflicted once each other

tsumura
テキストボックス
This is the accepted manuscript of a paper published in
Proc. 3rd Int'l Symp. on Computing and Networking (CANDAR'15), pp.400-403
Copyright (C) 2015 IEEE



Fig. 2. How to predict conflicts.

tend to conflict repeatedly because their execution paths do not
change and the threads access to the same shared variables
when they are executed again. To address this problem, in
this paper, we propose a conflict prediction for avoiding
conflicts before a thread executes a transaction based on
historical data of conflicts. Before starting a transaction, a
thread predicts whether a conflict will be caused or not during
the transaction, by referring to historical data. If the thread
predicts that a conflict will be caused, the thread waits for the
opponent thread to commit without starting the transaction. As
mentioned in section II-A, stall is also a ‘waiting’ mechanism
for conflict resolution. In contrast to stall, a thread does not
cause a new conflict with this conflict prediction, because the
thread waits without accessing any addresses.

Fig.2 shows an example where threads try to execute
same transactions as Fig.1 and can avoid conflicts by conflict
predictions. Assume thatTx.Yhas already conflicted withTx.X
andTx.Z, and each thread remembers it. First,thr.2 sends the
transaction ID ‘Y’ to all the other threads whenthr.2 starts
to executeTx.Y (t1). Receiving this,thr.1 and thr.3 remember
the transaction ID ‘Y.’ After that, thr.1 tries to executeTx.X
while Tx.Y is running on thr.2. At this time, thr.1 predicts
whetherTx.X will conflict with a transaction which is running
on another thread or not by referring to historical data of
conflicts (t2). As a result,thr.1 knows thatTx.X has already
conflicted withTx.Y running onthr.2, thr.1 predicts thatthr.1
will conflict with thr.2. Therefore, thr.1 waits for thr.2 to
commit Tx.Y. Thereby,thr.1 sends aWaiting message tothr.2.
In the same way,thr.3 predicts thatthr.3 will conflict with thr.2
beforethr.3 starts to executeTx.Z (t3). Hence,thr.3 waits for
thr.2 to commit, and it sends aWaitingmessage tothr.2. After
thr.2 commitsTx.Y, thr.2 sends aCommittedmessage tothr.1
and thr.3 (t4). When thr.1 and thr.3 receive thisCommitted
message, they start to execute transactions (t5).

C. Avoiding Conflicts with Minimum Waiting Time

To avoid conflicts with minimum waiting time, we adopted
additional two temporal data about each transaction. One is

Fig. 3. A conflict prediction by using opponent transaction IDs and temporal
data of a transaction.

how long the whole execution time of the transaction is, and
the other is how much time later a conflict will be caused than
the transaction starts.

Here, Fig.3 shows an example where a thread does not
wastefully wait when the thread predicts a conflict. Assume
that thr.2 has historical data used for conflict prediction. First,
thr.1 sends the transaction ID ‘X’ to all the other threads
when thr.1 starts to executeTx.X (t1). On the other hand,
thr.2 remembers the transaction ID ‘X.’ In order to predict a
conflict, thr.2 sends a request for inquiring the remaining time
until the commit of the opponent transaction to each opponent
thread (t2). After that, thr.2 comparesT1 the remaining time
of Tx.X sent back fromthr.1 with T2 the remaining time until
the conflict will be caused betweenTx.X andTx.Y (t3). In this
case, asT2 is shorter thanT1, thr.2 waits for being allowed
to executeTx.Y and sends aWaiting message tothr.1. After a
while, whenT1 becomes shorter thanT2, thr.1 sends aWakeup
message tothr.2 for promptingthr.2 to execute its transaction
(t4). When thr.2 receives thisWakeupmessage,thr.2 starts to
executeTx.Y. In this way, thr.2 can avoid causing a conflict
with the minimum waiting time. To implement this conflict
prediction, we define two messages, aWaiting and aWakeup,
on the coherence protocol for accurate conflict prediction.

III. I MPLEMENTATION

In this section, we describe additional hardware units re-
quired for implementing the conflict prediction on HTM and
how threads execute their transactions.

A. Additional Hardware Units

To implement the conflict prediction described in section
II-C, we have installed five hardware units in each core.
For achieving the conflict prediction, some temporal data
of transactions should be managed and used as parameters.
However, the temporal data such as whole execution time of a
transaction will vary at each execution because of cache misses
or stalls. Hence, we use the number of memory accesses as
an approximation of execution time. For a 16-core processor,



Fig. 4. How to remember historical data of conflicts.

the total size of the additional hardware units is estimated at
11.8 Kbytes.

B. How to Remember Historical Data of Conflicts

In this section, we will describe how threads remember
historical data for predicting conflicts. Here, Fig.4 illustrates
an example. First,Core1increments the value of itsA-Counter
for remembering the number of memory accesses, whenthr.1
issuesload A (t1). Similarly, Core2 increments the value
of its A-Counterwhenthr.2 issuesload B (t2) and load A
(t3). After thr.1 issuesload C (t4), thr.1 tries to issuestore
A (t5) and a conflict is detected (t6) becausethr.2 has already
accessed to the address A. In this case,thr.1 receives aNack
from thr.2, and stallsTx.X (t7). At the time, asthr.1 receives
the Nack, Core1 increments the value of itsA-Counter, and
copies the value toC-Table. In this example,Core1 stores
‘3’ on C-Table as the approximate value representing the
time from the start ofTx.X to the conflict betweenTx.X and
Tx.Y. In this way,Core1 remembers historical data about this
conflict on C-Table. After that, thr.2 issuesstore B and
Core2 increments the value of itsA-Counter(t8). Finally, the
value of itsA-Counteris copied toT-Tableas the approximate
total execution time ofTx.Y, when thr.2 commitsTx.Y (t9).

C. How to Predict and Avoid Conflicts

In this section, we will describe how a thread predicts a
future conflict and avoid it. Here, Fig.5 shows an example
where a thread predicts that a conflict will be caused. In Fig.5,
assume that each ofthr.1 and thr.2 remembers its execution
time and the time until the conflict betweenTx.X and Tx.Y
for the conflict prediction. First,thr.1 sends the transaction ID
‘X’ to all the other threads whenthr.1 starts to executeTx.X
(t1). Core2stores the ID ‘X’ sent fromthr.1 on O-Table. After
that, thr.2 sends a request for inquiring the remaining time
until the commit of the transaction to each opponent thread
stored onO-Table, in order to predict whenthr.2 should start
Tx.Y(t2). Receiving this request,thr.1 calculates the remaining

Fig. 5. How to predict and avoid conflicts.

time and gets the value ‘3,’ by subtracting ‘1’ the value of its
A-Counterfrom ‘4’ the execution time which is remembered
on C-Table. Receiving ‘X’ as the transaction ID ofthr.1 and
the calculated answer ‘3’ fromthr.1, thr.2 predicts whether
a conflict will be caused or not by referring to the saved
historical data. In this example,thr.2 checks whether ‘Y’ is
stored as one of the opponent transaction ofTx.X on C-Table
or not, and compares the time remaining until the commit of
Tx.X and the time remaining until the conflict betweenTx.X
and Tx.Y. If the time remaining until the commit ofTx.X is
shorter than the time remaining until the conflict betweenTx.X
and Tx.Y, thr.2 can start to executeTx.Y. In this case, the
time until the commit ofthr.1 is longer than the time until
the conflict betweenTx.X and Tx.Y. Therefore,thr.2 waits
to start Tx.Y (t3). As thr.2 predicts that a conflict will be
caused,thr.2 stores ‘1’ as the number of opponent threads on
O-Counter, and sends aWaiting message, which piggybacks
the time remaining until the conflict betweenTx.XandTx.Y, to
thr.1. Whenthr.1 receives thisWaitingmessage,thr.1 subtracts
the time remaining until the conflict betweenTx.X and Tx.Y
from the time remaining until the commitTx.X (t4). As a
result, Core1 stores ‘1’ on W-Table as the remaining time
until thr.1 allows thr.2 to execute a transaction. Afterwards, the
value ofW-Tablebecomes negative whenthr.1 issuesstore
A (t5). Therefore,thr.1 sends aWakeupmessage tothr.2 for
promptingthr.2 to startTx.Y. Receiving thisWakeupmessage,
Core2 decrements the value of itsO-Counter. At this time,
thr.2 startsTx.Y because the value ofO-Counterbecomes ‘0’
and thr.2 knows that no opponent transaction is running (t6).

IV. PERFORMANCEEVALUATION

In this section, we describe the evaluation results.

A. Evaluation Environment

We used a full-system execution-driven functional simulator
Wind River Simics[3] in conjunction with customized memory



TABLE I
SIMULATION PARAMETERS

Processor SPARC V9 Memory 8 GBytes
#cores 32 cores latency 450 cycles
clock 1 GHz Interconnect latency 14 cycles
issue width single
issue order in-order
non-memory IPC 1

D1 cache 32 KBytes D2 cache 8 MBytes
ways 4 ways ways 8 ways
latency 1 cycle latency 20 cycles

Fig. 6. Execution cycles ratio.

simulators built onWisconsin GEMS[4] for evaluation. The
detailed configuration of the simulated processor is shown
in TABLE I. We have evaluated the execution cycles of 7
workloads from GEMS microbench, SPLASH-2 benchmark
suite [5], and STAMP benchmark suite [6] with 16 threads.

B. Evaluation Results

The evaluation results with following three HTMs are shown
in Fig.6.

(B) LogTM (baseline)
(P1) HTM with the proposed conflict prediction only by

using opponent transaction IDs
(P2) HTM with the proposed conflict prediction by using

opponent transaction IDs and temporal data

Fig.6 shows the execution cycles of each HTM. Each bar
is normalized to the total execution cycles of the baseline
(B). For simulating multi-threaded execution on a full-system
simulator, the performance variability [7] must be considered.
Hence, we tried 10 times on each benchmark, and measured
95% confidence interval. The confidence intervals are illus-
trated as error bars in this figure.

The legend shows the breakdown items of the total cy-
cles. They represent the execution cycles out of transactions
(Non trans), the execution cycles in the transactions which
are committed (Good trans), the execution cycles of conflict
resolution (Conflict ovh), the waiting cycles before starting
transactions by the proposed conflict prediction (Wait).

As a result of the evaluation, HTM with the conflict pre-
diction (P2) reduces the execution cycles 63.5% in maximum,

and 19.6% in average with 16 threads. Next, we go to the
detailed examination of these results in the following.

C. Detailed Examination

As shown in Fig.6, the performance of many programs is
improved with (P1) and (P2). Especially,Wait with (P2) is
smaller than (P1). However, performance of some programs
with (P1) is better than (P2). To investigate the origin of this
result, we examined these programs in detail, and it is found
that the number of memory accesses tends to change in these
programs, because the execution path varies due to branch
instructions. Hence, with (P2), conflict predictions sometimes
fail and Conflict ovh of some programs are larger than with
(P1). However, Contention and Raytrace have transactions
whose number of memory accesses does not change. There-
fore, the conflict prediction in (P2) is more accurate than
(P1) because it uses temporal data of transactions, and the
performance of (P2) outperforms that of (P1).

V. CONCLUSIONS

In this paper, we propose a conflict prediction for HTM
to avoid conflicts in advance. When a thread predicts that a
conflict will be caused, it waits for being allowed to start its
transaction to avoid the conflict. We have evaluated HTM with
the conflict prediction by comparing with LogTM, through
experiments with GEMS microbench, SPLASH-2 benchmark
suite, and STAMP benchmark suite. The evaluation results
show that HTM with the conflict prediction decreases the total
execution cycles 63.5% in maximum, and 19.6% in average
with 16 threads. However, the conflict prediction sometimes
fails if a transaction includes branch instructions and its
execution path changes. Thereby, a conflict may be caused
or a thread may wait wastefully. Therefore, one of our future
works is to improve the prediction accuracy by considering
variation of execution paths in transactions.

ACKNOWLEDGMENT

This research was partially supported by the grant from the
Tatematsu Foundation.

REFERENCES

[1] M. Herlihy et al., “Transactional Memory: Architectural Support for
Lock-Free Data Structures,” inProc. 20th Int’l Symp. on Computer
Architecture (ISCA’93), May. 1993, pp. 289–300.

[2] K. E. Moore et al., “LogTM: Log-based Transactional Memory,” in
Proc. 12th Int’l Symp. on High-Performance Computer Architecture
(HPCA’06), Feb. 2006, pp. 254–265.

[3] P. S. Magnussonet al., “Simics: A Full System Simulation Platform,”
Computer, vol. 35, no. 2, pp. 50–58, Feb. 2002.

[4] M. M. K. Martin et al., “Multifacet’s General Execution-driven Multi-
processor Simulator (GEMS) Toolset,”ACM SIGARCH Computer Archi-
tecture News, vol. 33, no. 4, pp. 92–99, Sep. 2005.

[5] S. C. Woo et al., “The SPLASH-2 Programs: Characterization and
Methodological Considerations,” inProc. 22nd Int’l. Symp. on Computer
Architecture (ISCA’95), 1995, pp. 24–36.

[6] C. C. Minh et al., “STAMP: Stanford Transactional Applications for
Multi-Processing,” inProc. IEEE Int’l Symp. on Workload Characteri-
zation (IISWC’08), Sep. 2008.

[7] A. R. Alameldeen et al., “Variability in Architectural Simulations
of Multi-Threaded Workloads,” inProc. 9th Int’l Symp. on High-
Performance Computer Architecture (HPCA’03), Feb. 2003, pp. 7–18.




