
An Implementation of Auto-Memoization
Mechanism on ARM-based Superscalar Processor

Yuuki SHIBATA∗, Takanori TSUMURA∗, Tomoaki TSUMURA∗ and Yasuhiko NAKASHIMA†

∗Nagoya Institute of Technology, Gokiso, Showa, Nagoya, Japan
Email: camp@matlab.nitech.ac.jp

†Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, Japan
Email: nakashim@is.naist.jp

Abstract—We have proposed a processor called Auto-
Memoization Processor which is based on computation reuse. Un-
til now, we have implemented the auto-memoization mechanism
on a single-issue non-pipelined SPARC processor and studied the
processor. The processor dynamically detects functions and loop
iterations as reusable blocks, and memoizes them automatically.
In addition, the processor can apply computation reuse to the
blocks with a little reuse overhead. However, the fine evaluation
result of the processor may not guarantee enough practicality.
This is because instead of such a simple architecture, superscalar
architectures are now widely used for generic processors for
PCs, embedded processors, and other various processors. Hence,
we examine problems which will be caused in the case of
implementing the auto-memoization mechanism on an ARM-
based superscalar processor and design the ARM-based Auto-
Memoization Processor. For example, one of such problems is that
pipeline stalls are caused because of the reuse overhead. To solve
this problem, we implement a mechanism for overlapping the
reuse overhead and the pipeline execution of the processor. The
evaluation result with SPEC CPU95 benchmark suite shows that
the ARM-based Auto-Memoization Processor can also achieve
speed-up as well as the previous SPARC-based Auto-Memoization
Processor. In this paper, we describe the implementation and the
evaluation result of the ARM-based Auto-Memoization Processor.

Index Terms—microprocessor architecture, computation reuse,
memoization, Auto-Memoization Processor, superscalar.

I. INTRODUCTION

So far, various speed-up techniques for microprocessors
have been proposed. The performance of microprocessors had
been controlled by the gate latencies, and it had been rela-
tively easy to speed-up microprocessors by transistor scaling.
However, the interconnect delay has been going major, and
it has become difficult to achieve speed-up only by higher
clock frequency. Therefore, speed-up techniques based on ILP
(Instruction-Level Parallelism), such as superscalar or SIMD
instruction sets, have been counted on. Traditional speed-up
techniques mentioned above are all based on some parallelisms
in different granularities.

Meanwhile, we have proposed a processor called Auto-
Memoization Processor based on computation reuse [1] [2].
Auto-Memoization Processor dynamically detects functions
and loop iterations as reusable blocks, and memoizes them
automatically. The processor can apply computation reuse to
the blocks with a little reuse overhead. As a speed-up tech-

nique, memoization has no relation to parallelism of programs.
It depends upon value locality, especially input values of
functions or loops. Therefore, memoization can achieve speed-
up on the programs which do not have much ILP.

Until now, we have studied Auto-Memoization Processor
which is based on a single-issue non-pipelined SPARC ar-
chitecture. However, the fine evaluation result of the SPARC-
based Auto-Memoization Processor may not guarantee enough
practicality. This is because instead of such a simple archi-
tecture, superscalar architectures are now widely used for
generic processors for PCs, embedded processors, and other
various processors. Hence, at first, we focus on an ARM-based
superscalar architecture which is not only widely used for
embedded processors but also being used for server processors.
Next, we examine problems which will be caused in the case of
implementing the auto-memoization mechanism on an ARM-
based superscalar processor. Finally, we solve the problems
and design the ARM-based Auto-Memoization Processor. For
example, one of such problems is that pipeline stalls are caused
because of the reuse overhead. To solve this problem, we
implement a mechanism for overlapping the reuse overhead
and the pipeline execution of the processor. Another problem
is that functions can not be detected as reusable blocks easily,
and to solve this problem, we implement the decoders for
monitoring function calls and function returns. Moreover, it is
also one of such problems that some of inputs of a reusable
block are lost before the retire stage, and to solve this problem,
we extend pipeline registers. In this paper, we describe the
implementation and the evaluation result of the ARM-based
Auto-Memoization Processor.

II. RELATED WORK

A general-purpose reuse technique for single instructions
with fully associative reuse buffer was proposed by Sodani [3].
Each reuse buffer entry holds the operand values and the result
of an instruction execution. The mem-valid bit and the mem-
address fields are maintained to ensure a load instruction can
be reused. On a store the mem-address fields are associatively
searched and the mem-valid bits are reset.

González [4] evaluated reuse trace memory (RTM) with
maximum 256K entries. Each entry is indexed by part of
PC (e.g., 8-way set-associative and 16 entries per PC) and

tsumura
テキストボックス
This is the accepted manuscript of a paper published inProc. Int'l Symp. on System-on-Chip 2014 (SoC2014)Copyright (C) 2014 IEEE



Fig. 1. Structure of Auto-Memoization Processor.

is assumed to hold 8-in 8-out register values and 4-in 4-out
memory values. The maximum size of RTM is over 32MB.
This work provides the upper bounds achieved with an infinite
reuse trace memory.

Costa [5] proposed a reuse scheme which employs a fully
associative table that does not include load/store instruction.
The program counter and the operand values are associatively
compared. This work approaches trace-level reuse by provid-
ing an evaluation of a feasible reuse mechanism against [4].

There are also works which focused on only load/store
instructions. Yang [6] focused on load-load/store-load redun-
dancy and reuse the address and/or value by maintaining a
load-table which holds past addresses and values. Moreover,
Onder [7] proposed non-speculative load and store reuse
technique. CAM based value-address association structure
(VAAS) is maintained for address associations of loaded and
stored values present in the physical register file. This structure
enables store-to-load and load-to-load forwarding.

In contrast to these studies, Auto-Memoization Processor,
which we have proposed, dynamically detects functions and
loop iterations as reusable blocks and memoizes them auto-
matically. In addition, Auto-Memoization Processor executes
traditional load-modules faster without any software assist.

III. RESEARCH BACKGROUND

In this section, we describe the previous SPARC-based
Auto-Memoization Processor as the background of our study.

A. Auto-Memoization Processor

Computation reuse is a well-known speed-up technique
in the software field. It is storing the input sequences and the
results of some computation blocks, such as functions, for later
reuse and avoiding recomputing them when the current input
sequence matches one of the past input sequences. It is called
memoization [8] to apply computation reuse to computation
blocks in programs.

Auto-Memoization Processor [1], which we have proposed,
executes traditional load-modules faster without any software
assist. There is no need to rewrite or recompile programs. This
processor dynamically detects functions and loop iterations as
reusable blocks, and memoizes them automatically.

Fig. 2. Structure of MemoTbl.

The structure of Auto-Memoization Processor is depicted
briefly in Fig.1. Auto-Memoization Processor consists of the
memoization engine, MemoTbl and MemoBuf. MemoTbl is
a set of tables for storing input/output sequences of past
executed computation blocks, or instruction regions. MemoBuf
works as a write buffer for MemoTbl.

Entering to a memoizable region, the processor refers to
MemoTbl and compares the current input sequence with the
past input sequences which are stored in MemoTbl. In the
following, we call this comparison ‘reuse test.’ If the current
input sequence matches one of the stored input sequences
on MemoTbl, the memoization engine writes back the stored
outputs, which are associated with the matched input sequence,
to the registers and caches. This omits the execution of the
region and reduces the total execution time.

If the current input sequence does not match any past input
sequence, the processor stores the current inputs and outputs
of the region into MemoBuf while executing the region as
usual. The input sequence consists of the register/memory
values which are read over the region, and the output sequence
consists of the values which are written. If the region is
a function, its return value is also included in the output
sequence. Reaching the end of the region, the memoization
engine stores the content of MemoBuf into MemoTbl for
future reuse.

MemoBuf has multiple entries, and each MemoBuf entry
corresponds to one input/output sequence. Each MemoBuf
entry has a stack pointer (SP), a return address (retOfs), an
input sequence (Read), and an output sequence (Write). More-
over, MemoBuf has a stack-like structure, and can manage
nested computation blocks. MemoBuf top, the stack pointer
for MemoBuf, is incremented when Auto-Memoization Pro-
cessor detects a new computation block, and is decremented
when Auto-Memoization Processor reaches the end of a block.

The structure of MemoTbl is shown in Fig.2. MemoTbl
consists of four tables:

FLTbl: for start addresses of computation blocks.
InTbl: for input value sets of computation blocks.
AddrTbl: for input address sets of computation blocks.
OutTbl: for output data sets of computation blocks.
FLTbl, AddrTbl, and OutTbl are implemented with RAM.

On the other hand, InTbl is implemented with a ternary CAM
(Content Addressable Memory), so that input values can be
found fast by associative search.

Each FLTbl line corresponds to a reusable computation
block. Each FLTbl entry has whether the block is a function
or a loop (ForL) and the start address of the block (addr).



(a) Tree of input sequences.

(b) Input matching flow on MemoTbl.

Fig. 3. Input sequences and Input matching flow.

Each InTbl entry has an index for FLTbl (FLTbl idx), which
represents the associated instruction region, or computation
block, of the input stored in the entry, and holds input values
(input values). Because each InTbl entry can hold single
cache line, an input sequence over multiple cache lines is
registered onto InTbl by using several entries. Hence, each
InTbl entry also has an index key for its parent entry (parent
idx). Incidentally, When a variable is read as an input value,
Auto-Memoization Processor stores its whole cache line in an
InTbl entry, masking unreferred values with don’t care bits.

AddrTbl has the same number of entries as InTbl, and each
AddrTbl entry corresponds to the InTbl entry which has the
same index. Each AddrTbl entry has an input address which
should be tested next (next adr). Each AddrTbl entry also has
a flag (ec flag), which shows whether it is the terminal entry
of an input sequence, and if it is terminal, it has a valid pointer
(OutTbl idx), which refers to an OutTbl entry for associated
outputs.

Each OutTbl entry has FLTbl idx, addresses (output addr)
and values (output values) of an output sequence. Each OutTbl
entry also has an index for next OutTbl entry (next idx)
because an output sequence may be stored over multiple
OutTbl entries.

B. Execution Mechanism

Now, an input sequence for a certain instruction region can
be represented as a sequence of tuples, each of which contains
an address and a value. In a certain instruction region, the
series of input addresses sometimes branch off from each
other. For example, after a branch instruction, what address
will be referred next relies on whether the branch was taken
or untaken. Therefore, the universal set of the different input

sequences for an instruction region can be represented as a
multiway input tree. Here, input sequences of a memoizable
region are represented as a way from its root to a leaf on this
tree. Hence, Auto-Memoization Processor should hold input
sequences as a tree structure.

Fig.3(a) shows an example of a tree structure of input
sequences for a instruction region. Each node of the tree repre-
sents input values, and each edge represents the address which
should be referred next. Here, End represents the terminal of
a sequence. Fig.3(b) shows how the input sequences shown
in Fig.3(a) are stored into InTbl/AddrTbl. In this figure, X in
input values represents don’t care bits in the cache line and
will not be tested for computation reuse, and the entry whose
parent idx is FF represents a root entry of a input sequence.
Fig.3(b) also shows an input matching flow on MemoTbl as
(t1)...(t6).

First, Auto-Memoization Processor reads the values of reg-
isters when the start address of a reusable instruction region
is detected. Then, the processor searches the root entry whose
parent idx is FF and whose input values match the values
on the current registers. Now, the line 00 matches (t1). Next,
the address of 0x200 is read because next addr of the entry
00 in AddrTbl indicates 0x200 (t2). Then, the processor
searches the entry whose parent idx is 00 and whose input
values match the values of 0x200 (t3). This process is applied
repeatedly until a mismatch of input values occurs or the
processor finds the entry whose ec flag is set (t4)(t5). In this
example, as ec flag of the entry 03 in AddrTbl is set, that
is, the processor detects the terminal of a input sequence,
reuse test for the current input values succeeds. Therefore,
the processor can get the output values by using the index
of OutTbl idx stored in the terminal entry (t6). Finally, the
processor writes back the output values to the registers and
caches. This omits the execution of the instruction region and
reduces the total execution time.

IV. SUPERSCALAR AUTO-MEMOIZATION PROCESSOR

In this section, we describe two problems of the SPARC-
based Auto-Memoization Processor and the pipeline execution
flow on the ARM-based Auto-Memoization Processor.

A. Problems of SPARC-based Auto-Memoization Processor

Until now, we have studied Auto-Memoization Processor
which is based on the SPARC architecture [9]. However, this
SPARC-based Auto-Memoization Processor has two problems.

One problem is that the SPARC architecture is a single-
issue non-pipelined architecture. However, single-issue non-
pipelined architectures are now not widely used for processors.
Recently, superscalar architectures which are multiple-issue
pipelined architectures are widely used for generic processors
for PCs, embedded processors, and other various processors.
Generally, superscalar architectures have more complex hard-
ware structures than single-issue non-pipelined architectures.
Therefore, we have to implement the auto-memoization mech-
anism on a superscalar processor and evaluate the performance
of the superscalar-based Auto-Memoization Processor. This



implementation enables us to evaluate the practical perfor-
mance of Auto-Memoization Processor.

The other problem is that the auto-memoization mechanism
of the SPARC-based Auto-Memoization Processor depends
on characteristics of the SPARC architecture. For example,
SPARC instruction set which is derived from RISC lineages,
SPARC ABI, and register windows are convenient for the
auto-memoization mechanism (e.g., a mechanism for detecting
computation blocks as reusable blocks). In other words, it is
unknown whether the auto-memoization mechanism can be
implemented with base architectures other than the SPARC
architecture or not. To solve this problem, we adopt the
ARM architecture [10] and implement the auto-memoization
mechanism on the ARM-based superscalar processor. The
ARM architecture is also categorized into RISC architecture,
but the ARM architecture has more complex instructions than
the SPARC architecture. In addition, the ARM architecture
is not only widely used for embedded processors but also
being used for server processors [11]. Therefore, if the ARM-
based Auto-Memoization Processor can be implemented, the
practicality of Auto-Memoization Processor can be more gen-
erally confirmed. Moreover, we can acquire some knowledge
about merging the superscalar which is one of the ILP-based
methods and the memoization mechanism.

B. Pipeline Execution Flow on ARM-based Auto-Memoization
Processor

Fig.4 shows three different situations of the pipeline execu-
tion flow on the ARM-based Auto-Memoization Processor. In
the following, we describe each situation.

1) Pipeline execution without Memoization: First, Fig.4(a)
shows a situation of the pipeline execution flow without mem-
oization. Here, for simplicity, assume that ARM-based Auto-
Memoization Processor equips two pipelines and each pipeline
has four stages, Fe (fetch), De (decode), Ex (execution) and
Re (retire). In addition, assume that each stage is executed
in 1 cycle, and a pipeline stall is not caused by a cache
miss and so on. In this figure, the instruction (bl func)
represents the instruction for a function call and the instruction
(mov pc,lr) represents the instruction for a function return,
that is, the region from (bl func) to (mov pc,lr) is a
function region. This figure shows that the processor executes
the function without pipeline stalls. Incidentally, 11 cycles are
required for the function execution.

2) Pipeline execution when succeeding in reuse test: Next,
Fig.4(b) shows a situation of the pipeline execution flow in
the case reuse test succeeds. When the ARM-based Auto-
Memoization Processor detects an instruction for a function
call, the processor tries reuse test for applying computation
reuse to the detected function. At this time, the values which
should be compared as inputs of the function have to be written
back to the registers and caches in order to be used for trying
reuse test correctly. When the instruction for a function call
is retired, it is guaranteed that the processor already finishes
executing instructions prior to the instruction for a function
call. In other words, it is guaranteed that the values which

(a) Pipeline execution flow without memoization.

(b) Pipeline execution flow when succeeding in reuse test.

(c) Pipeline execution flow when failing in reuse test.

Fig. 4. Pipeline execution flow.

will be compared as inputs of the function are already written
back to the registers and caches. Therefore, we design that the
processor tries reuse test when an instruction for a function call
is retired (t1). Then, the processor executes the instructions in
the function with stalling the retire stage while trying reuse
test. This is because input values which should be compared



in reuse test can be rewritten if the processor retires the
instructions in the function while trying the reuse test. This
rewrite of input values can cause false computation reuse of
the function.

Then, if the processor succeeds in reuse test, the processor
writes back the stored outputs, which are associated with
the matched input sequence, to the registers and caches (t2).
At the same time, the instructions in the pipeline should be
flushed. This is because the instructions in the pipeline belong
to the function whose execution is omitted by computation
reuse, and these instructions have to be invalidated. At this
time, by flushing the pipeline, pipeline bubbles are assumed
to appear in each cycle after the processor tries to fetch the
instruction (mov R3,R0). These pipeline bubbles may negate
the performance gain by computation reuse. Therefore, we will
describe a method for solving this problem in section VI-B.

Then, the processor fetches the instruction of the return des-
tination (mov R1,R0) and continues to execute instructions
(t3). In Fig.4(b), by omitting the function execution, 6 cycles
are required for the function execution. This situation shows
that the execution time can be reduced by 5 cycles as compared
with the case without memoization shown in Fig.4(a).

3) Pipeline execution when failing in reuse test: Finally,
Fig.4(c) shows a situation of the pipeline execution flow in the
case reuse test fails. As mentioned above, the processor tries
reuse test when the instruction for a function call is retired (t1).
Then, the processor executes the instructions in the function
with stalling the retire stage while trying reuse test. Here, if the
processor fails in reuse test, the retire stage is restored from
stall and the processor continues to execute instructions (t2).
In Fig.4(c), 12 cycles are required for the function execution.
This situation shows that the execution time increases by 1
cycle as compared with the case without memoization shown
in Fig.4(a). This is because the processor executes instructions
with stalling retire stage while trying reuse test.

V. IMPLEMENTATION

In this section, we describe the base architecture of the
ARM-based Auto-Memoization Processor and the hardware
extension for memoization.

A. Base Architecture

Fig.5 shows the brief structure of the ARM-based Auto-
Memoization Processor. The pipeline stages are as follows;

IA (Instruction Address)
The address whose instruction should be executed
next is calculated.

IF (Instruction Fetch)
Two consecutive instructions are fetched from the
instruction cache. In addition, the destination of a
branch instruction is predicted with g-share.

ARM-D (Arm-Instruction Decode)
Fetched instructions are decoded. In addition, an
instruction for a function call and an instruction for
a function return are detected by the memoization
decoder (M1-D) which is described in section V-B.

Fig. 5. Structure of the ARM-based Auto-Memoization Processor.

MAP/SCH (Register mapping/Schedule)
Logical registers of instruction operands are mapped
into the reorder buffer which is combined with an
instruction window and physical registers.

SEL/RD (Select and Read)
The instructions which do not depend on the other
instructions in the reorder buffer are issued out-of-
order.

IE (Instruction Execution)
The base architecture has five-parallel execution
stages in the pipeline.

BRC For branch instructions.
SFM For shift operation instructions.
ALU For arithmetic instructions.
EAG For address calculation.
OP1 For load instructions and store instructions.

WR (Writeback)
The result of the instruction which is executed at
each instruction execution stage is written back to
the reorder buffer.

RE (Retire)
The instruction whose execution is finished is retired
in order. In addition, an instruction for a function
return is detected by the memoization decoder (M2-
D) which is described in section V-B.

B. Hardware Extension for Memoization

In this section, we discuss the additional hardware units for
memoization.

1) Decoders for Memoization: Auto-Memoization Proces-
sor must monitor function calls and function returns in order
to detect functions as reusable instruction regions. In the ISA
of SPARC, it is defined that a call instruction is ‘call’ and a
return instruction is ‘ret.’ Therefore, the SPARC-based Auto-
Memoization Processor can easily detect functions by only
monitoring these two instructions. On the other hand, in the
ISA of ARM, specific instructions, which should be used for a
function call and a function return, are not defined. Here, Fig.6
shows the call codes and return codes in the ARM binaries.



(a) Call codes. (b) Return codes.

Fig. 6. Call codes and return codes in ARM binaries.

Fig. 7. How to detect function calls and function returns.

As shown in this figure, there are several call codes and
return codes. Therefore, the ARM-based Auto-Memoization
Processor can not detect functions by merely monitoring
specific instructions in the same way as the SPARC-based
Auto-Memoization Processor. Hence, we add the decoders
(M1-D and M2-D) for monitoring function calls and function
returns.

Fig.7 shows how to detect function calls and function
returns. Now, we describe how these decoders detect the
call codes and the return codes shown in Fig.6. First, an
instruction for rewriting the value which is stored in the
program counter is monitored by M1-D (1). Depending on
the monitored instruction, how the decoders detects the call
codes and the return codes is divided into three patterns. If
the monitored instruction is bl (2), the ARM-based Auto-
Memoization Processor detects the instruction as an instruction
for a function call (C-i). Next, if the monitored instruction is
b or mov (3), the source operand of the instruction is checked.
In the case the source operand is other than link register
(lr) where a return address is held (4), the immediately
preceding instruction is checked. If the checked instruction
is an instruction which saves a return address (e.g., mov
lr,pc) (5), the processor detects the monitored instruction
as an instruction for a function call (C-ii). On the other
hand, in the case the source operand is link register (lr)
(6), the processor detects the instruction as an instruction for
a function return (R-i). Finally, if the monitored instruction
is ld (7), the immediately preceding instruction is checked.
If the checked instruction is an instruction which saves a
return address (e.g., mov lr,pc) (8), the processor detects

the monitored instruction as an instruction for a function call
(C-iii). Incidentally, after the return address is saved in the
stack at the function prologue, the return address can be
rewritten in the program counter by a load instruction at the
function epilogue. In order to detect such a load instruction as
an instruction for a function return, the address in which the
value of the program counter is saved at function prologue is
recorded in M2-D. After that, if a load instruction for reading
the value of the program counter from the address is found
(9), the processor detects an instruction as an instruction for
a function return (R-ii). By using these decoders, the ARM-
based Auto-Memoization Processor can detect functions as
reusable instruction regions.

2) Pipeline Register for Memoization: In order to apply
computation reuse to the functions which are detected as
reusable instruction regions, Auto-Memoization Processor has
to store inputs and outputs of each function in MemoBuf and
MemoTbl. Here, the inputs and outputs are a set of values
and addresses which are read and written in the function. The
ARM-based Auto-Memoization Processor stores the inputs
and outputs at the retire stage. This is because a problem is
caused if the processor tries to store the inputs and outputs
at the stages prior to the retire stage. The problem is that
in the case the executed instructions are flushed by branch
prediction misses and so on, large overhead will be caused by
invalidating the MemoBuf entries corresponding to the flushed
instructions. Therefore, it is not realistic that the processor tries
to store the inputs and outputs at the stages prior to the retire
stage. However, even if the inputs and outputs will be stored at
the retire stage, another problem occurs. The problem is that
some of inputs of a function can not be stored in MemoBuf at
the retire stage. Specifically, source operand values of a load
instruction can not be stored as inputs of a function at the
retire stage because the values are lost before the retire stage.

Here, we describe why some of inputs of a function are
lost before the retire stage and how to solve the problem. For
example, when the instruction (ld R0,[R1]) is processed
at the instruction execution stage, the value which is stored in
the address indicated by R1 is read into the physical register
corresponding to logical register R0. Then, the value in the
physical register is written into logical register R0 at the retire
stage. At this time, the address value which is stored in source
operand R1 has been lost from the reorder buffer because
the address value is not required for retiring its instruction.
Therefore, the address value can not be stored in MemoBuf as
the input of the function at the retire stage. In order to solve the
problem, we extend pipeline registers. Specifically, we design
that values of source operands are held and sent to the next
stage at the instruction execution stage, the writeback stage,
and the retire stage as well as the other stages. The values of
source operands are held in the extended pipeline registers and
sent to the retire stage through the extended pipeline registers.
Thereby, all inputs of functions can be stored at the retire
stage.



TABLE I
SIMULATION PARAMETERS.

MemoBuf 64 KBytes
MemoTbl CAM 256 KBytes
Comparison (register and CAM) 1 cycle / 64Bytes
Comparison (Cache and CAM) 2 cycles / 64Bytes
Writeback (MemoTbl to Reg. / Cache) 1 cycle / 64Bytes
L1 I-cache 16 KBytes

line size 64 Bytes
ways 4 ways
miss penalty 8 cycles

L1 D-cache 32 KBytes
line size 64 Bytes
ways 4 ways
miss penalty 8 cycles

L2 cache 2 MBytes
line size 64 Bytes
ways 4 ways
miss penalty 40 cycles

pipeline stage
IA (Instruction Address) 1 insn / cycle
IF (Instruction Fetch) 2 insns / cycle
ARM-D (ARM-Instruction Decode) 2 insns / cycle
MAP/SCH (Register Mapping/Schedule) 2 insns / cycle
SEL/RD (Select and Read) 2 insns / cycle
IE (Instruction Execution) 1 insn / cycle
WR (Writeback) 1 insn / cycle
RE (Retire) 2 insns / cycle

Reorder Buffer 32 entries

VI. PERFORMANCE EVALUATION

We have implemented the auto-memoization mechanism on
a simulator for an ARM-based superscalar processor. This
section describes the evaluation results with the simulator.

A. Simulation Environment

We have developed an in-house simulator of an ARM-based
superscalar processor and implemented the auto-memoization
mechanism on the simulator. The simulation parameters are
shown in TABLE I. The on-chip CAM for InTbl in MemoTbl
is modeled on DC18288 [12] (64Bytes × 4K lines). We
assume the latency for input matching between CAM and
the register as 1cycle / 64Bytes, and the latency between
CAM and main memory as 2cycles / 64Bytes. In this paper,
we have evaluated the performance of the ARM-based Auto-
Memoization Processor with applying computation reuse to
only functions. This is because we have not still implemented
the mechanism for memoizing loop iterations.

B. Evaluation with SPEC CPU95

We have evaluated the performance of following two pro-
cessors;

(N) No-memoization processor (baseline).
(A) ARM-based Auto-Memoization Processor.

Here, no-memoization processor (N) represents the ARM-
based superscalar processor without memoization mecha-
nism. Workloads are benchmark programs in SPEC CPU95
INT suites with ‘train’ dataset. The benchmark programs
are compiled by gcc version 4.1.1 with ‘-O2 -msoft-float
-march=armv4’ option, and linked statically. In this section,
we compare the performance of (N) with (A).

TABLE II
REDUCTION RATE OF THE EXECUTED INSTRUCTION COUNTS.

099. 124. 129. 130. 132. 134. 147.
go m88ksim compress li ijpeg perl vortex

6.4% 29.0% 1.7% 10.8% 1.6% 7.5% 39.2%

Fig. 8. Ratio of cycles (SPEC CPU95 INT).

At first, TABLE II shows the reduction rate of the executed
instruction counts with each benchmark program on (A). This
result shows that by omitting the execution of functions, the
executed instruction counts are reduced with all programs as
compared with (N). Here, (A) reduces the executed instruction
counts by 13.7% in average. Therefore, the execution cycles
will be reduced and the IPC will be increased.

Next, the ratio of execution cycles of (A) are shown in
Fig.8. Each bar in this figure is normalized to the number
of the execution cycles of (N). The legend in the figure
shows the breakdown items of total cycles. They represent the
executed instruction cycles (‘exec’), the comparison overhead
between CAM and registers or the caches (‘read’), the write-
back overhead (‘write’), the pipeline bubble penalty which
is described in section IV-B (‘reuse bubble’). Incidentally,
‘exec’ also includes the first-level and the second-level cache
miss penalties and the cycles which are required for waiting
until the busy cache controller becomes idle in order to try
reuse test.

As shown in this figure, (A) reduces the execution cycles by
28.6% in maximum and by 7.9% in average. These reduction
rates are almost the same as the SPARC-based memoiza-
tion processor. This result means that the ARM-based Auto-
Memoization Processor can also achieve speed-up as well
as the SPARC-based Auto-Memoization Processor. However,
‘reuse bubble’ cycles occupy no less than about 20% of total
cycles with 124.m88ksim. This means that the pipeline bubbles
negate the performance gain by computation reuse. Here, we
discuss how we solve this pipeline bubble problem. The ARM-
based Auto-Memoization Processor executes instructions in a
function while trying reuse test for the function. Therefore,
when the processor fails in the reuse test, the processor can
continue to execute the function without flushing instructions



Fig. 9. IPC (SPEC CPU95 INT).

in the pipeline. On the other hand, when the processor
succeeds in the reuse test, the instructions in the pipeline
must be flushed. At this time, if the processor has executed
instructions from the return destination while trying reuse
test, the instructions in the pipeline need not to be flushed.
Therefore, we consider a prediction mechanism for reuse test.
The prediction mechanism is similar to a mechanism of a
branch predictor. When the processor predicts that reuse test
will succeed with this mechanism, the processor executes
instructions from the return destination while trying the reuse
test. Incidentally, this prediction is tried in the decode stage
because an instruction for a function call can be detected
first in the stage. Then, in the case the processor succeeds in
the reuse test actually, the processor can continue to execute
the following instructions without flushing instructions in the
pipeline. Therefore, if the prediction for reuse test succeeds,
the processor can restrain causing pipeline bubbles.

Finally, the IPC of (A) are shown in Fig.9. Each IPC is
represented by two bars. The left-bar plots the IPC of (N) and
the right-bar plots the IPC of (A). Now, the IPC is generally
used for evaluating the performance of superscalar processors.
However, if we calculate the IPC of the (A) on the basis of
counts of the instructions which are executed actually, we can
not evaluate speed-up correctly. This is because (A) reduces
the executed instruction counts by omitting function execu-
tions and outputs the same execution results as the processor
without the auto-memoization mechanism. Therefore, we have
calculated the IPC on the basis of counts of the instructions
which should be executed primarily, including the omitted
instructions. With many programs such as 124.m88ksim and
147.vortex, the IPC of (A) is higher than (N). However, with
129.compress, the IPC of (A) is lower than (N). This is
because in 129.compress, there are few functions to which
computation reuse can be applied and only the search overhead
increases as we can see in TABLE II and Fig.8. Therefore, in
future, we will have to implement the mechanism for avoiding
memoizing unsuitable computation blocks. This mechanism
which is called overhead filter have been already implemented

on the SPARC-based Auto-Memoization Processor [2], and
we know that the performance degradation by increasing the
search overhead can be restrained with this mechanism.

In conclusion, the performance of the ARM-based Auto-
Memoization Processor(A) is better than the no-memoization
processor (N) as a whole. The result shows that the perfor-
mance of the ARM-based Auto-Memoization Processor can
also increase as well as the SPARC-based Auto-Memoization
Processor.

The hardware implementation cost for the auto-memoization
mechanism is not small, and the power consumption will also
increase. However, energy consumption will not increase so
much because the execution time is reduced. Cache misses and
cache accesses are also reduced by eliminating some function
execution, and this can restrain the increase of the energy
consumption. We intend to examine the hardware cost and
the energy consumption of ARM-based Auto-Memoization
Processor in detail.

VII. CONCLUSIONS

In this paper, we described the implementation and
the evaluation result for the ARM-based superscalar Auto-
Memoization Processor. Through the implementation, we
can acquire some knowledge about implementing the auto-
memoization mechanism on an ARM-based superscalar
processor. In addition, the evaluation result with SPEC
CPU95 benchmark suite shows that the ARM-based Auto-
Memoization Processor can also achieve speed-up as well as
the SPARC-based Auto-Memoization Processor.

One of our future works is to implement a method for
restraining the performance degradation which is caused by
the pipeline bubbles. Other future works are to implement the
mechanism for memoizing loop iterations and the mechanism
for avoiding memoizing unsuitable computation blocks.

REFERENCES

[1] T. Tsumura, I. Suzuki, Y. Ikeuchi, H. Matsuo, H. Nakashima, and
Y. Nakashima, “Design and evaluation of an auto-memoization proces-
sor,” in Proc. Parallel and Distributed Computing and Networks, Feb.
2007, pp. 245–250.

[2] K. Kamimura, R. Oda, T. Yamada, T. Tsumura, H. Matsuo, and
Y. Nakashima, “A speed-up technique for an auto-memoization proces-
sor by reusing partial results of instruction regions,” in Proc. 3rd Int’l.
Conf. on Networking and Computing (ICNC’12), Dec. 2012, pp. 49–57.

[3] A. Sodani and G. S. Sohi, “Dynamic instruction reuse,” in Proc. 24th
Annual Int’l Symp. on Computer Architecture (ISCA-24), Jun. 1997, pp.
194–205.

[4] A. González, J. Tubella, and C. Molina, “Trace-level reuse,” in Proc.
Int’l Conf. on Parallel Processing, Sep. 1999, pp. 30–37.

[5] A. T. Costa, F. M. G. França, and E. M. C. Filho, “The dynamic trace
memorization reuse technique,” in PACT, 2000, pp. 92–99.

[6] J. Yang and R. Gupta, “Load redundancy removal through instruction
reuse,” in Int’l Conf. on Parallel Processing, Aug. 2000, pp. 61–68.

[7] S. Önder and R. Gupta, “Load and store reuse using register file
contents,” in ICS’01, 2001, pp. 289–302.

[8] P. Norvig, Paradigms of Artificial Intelligence Programming. Morgan
Kaufmann, 1992.

[9] UltraSPARC III Cu User’s Manual, Sun Microsystems, May 2002.
[10] ARM Limited, ”ARM Architecture Reference Manual”ARM DDI 0100E,

2000.
[11] AMD Corporation, AMD Opteron A1100 Processor, 2014.
[12] MOSAID Technologies Inc., Feature Sheet: MOSAID Class-IC

DC18288, 1st ed., Feb. 2003.




