This is the accepted manuscript of a paper published in
Proc. 2nd Int'l Symp. on Computing and Networking (CANDAR'14), pp.426-432
Copyright (C) 2014 IEEE

Hinting for Auto-Memoization Processor
based on Static Binary Analysis

Takanori TSUMURA*, Yuuki SHIBATA*, Kazutaka KAMIMURA*¥,
Tomoaki TSUMURA* and Yasuhiko NAKASHIMAf

*Nagoya Institute of Technology, Gokiso, Showa, Nagoya, Japan
Email: camp@matlab.nitech.ac.jp
TNara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, Japan
Email: nakashim @is.naist.jp
iCurrently with DENSO CORPORATION, 1-1, Showa-cho, Kariya, Aichi, Japan

Abstract—We have proposed a processor called Auto- On the other hand, we have proposed a processor called

Memoization Processor which is based on computation reuse, and
merged it with speculative multi-threading based on value pre-
diction into a mechanism called Parallel Speculative Execution.
The processor dynamically detects functions and loop iterations
as reusable blocks, and registers their inputs and outputs into the
table called Reuse Table automatically. Then, when the processor
detects the same block, to apply computation reuse to the block,
the processor compares the current input sequence with the
previous input sequences registered in Reuse Table. In this paper,
we propose a hinting technique for Auto-Memoization Processor
based on static binary analysis. The hint indicates two distinctive
types of input for loop bodies. One input type is unchanging
value. When applying computation reuse to a loop, the processor
can skip comparing such unchanging inputs with the values on
Reuse Table. The other input type is unmonotonous changing
value. The loops which have unmonotonous changing inputs will
not benefit from computation reuse, and the processor can stop
applying useless computation reuse to such loop iterations. By
hinting these types of input to the processor, the overhead of
Auto-Memoization Processor can be reduced. The result of the
experiment with SPEC CPU95 benchmark suite shows that the
hinting technique improves the maximum speedup from 40.6%
to 51.8%, and the average speedup from 11.9% to 16.5%.

I. INTRODUCTION

So far, various speed-up techniques for microprocessors
have been proposed. The performance of microprocessors had
been controlled by the gate latencies, and it had been rela-
tively easy to speed-up microprocessors by transistor scaling.
However, the interconnect delay has been going major, and
it has become difficult to achieve speed-up only by higher
clock frequency. Therefore, speed-up techniques based on ILP
(Instruction-Level Parallelism), such as superscalar or SIMD
instruction sets, have been counted on. Recently, multi-core
processors equipped with two or more cores attract a great deal
of attention. They are now in wide use from generic processors
for PCs to embedded processors[1].

Generally, a program forms a poset, or a lattice. It has
a length along time axis, and has a width (i.e. parallelism)
orthogonal to time axis. Traditional speed-up techniques men-
tioned above are all based on some parallelisms in different
granularities. In other words, their approaches aim to increase
performance by shrinking the width of the program lattice.

Auto-Memoization Processor based on computation reuse[2].
In contrast to traditional speed-up techniques for micropro-
cessors, memoization, or computation reuse, tries to shrink
the length of the program lattice. As a speedup technique,
memoization has no relation to parallelism of programs. It de-
pends upon value locality, especially input values of functions
or loops. Therefore, memoization can achieve speed up on the
programs which do not have much ILP.

So far, we have proposed some speed-up techniques for
an Auto-Memoization Processor[3]. All of them are based
on the characteristics of reusable blocks which are analyzed
dynamically along the program execution. However, dynamic
analysis has a problem. Specifically, only after an execution
of a reusable block has been completed, it can be analyzed
and its characteristic can be used for speedup.

In this paper, to reduce the overhead of Auto-Memoization
Processor, we propose a hinting technique based on static
binary analysis. The static analysis can extract the characteris-
tics considering all instructions in a program before program
execution is started. Therefore, the hints generated by static
binary analysis are available just after the program execution
is started.

II. RESEARCH BACKGROUND

In this section, we describe Auto-Memoization Processor
and Parallel Speculative Execution as the background of our
study.

A. Auto-Memoization Processor

Computation reuse is a well-known speed-up technique
in the software field. It is storing the input sequences and the
results of some computation blocks, such as functions, for later
reuse and avoiding recomputing them when the current input
sequence matches one of the past input sequences. It is called
memoization[4] to apply computation reuse to computation
blocks in programs.

Memoization is originally a programming technique for
speed-up, and brings good results on expensive functions[5].
However, it requires rewrite of target programs, and the


tsumura
テキストボックス
This is the accepted manuscript of a paper published in
Proc. 2nd Int'l Symp. on Computing and Networking (CANDAR'14), pp.426-432
Copyright (C) 2014 IEEE


traditional load-modules or binaries can not benefit from
memoization. Furthermore, the effectiveness of memoization is
influenced much by programming styles. Rewriting programs
using memoization occasionally makes the programs slower.
This is because software implemented memoization costs
considerable overheads.

On the other hand, Auto-Memoization Processor[2], which
we have proposed, can execute traditional load-modules faster
with low overheads and without rewriting binary program.
Auto-Memoization Processor dynamically detects functions
and loop iterations as reusable blocks, and memoizes them
automatically. A region between an instruction with a callee
label and return instruction is detected as a memoizable
function. A region between a backward branch instruction and
its branch target is detected as a memoizable loop iteration.

Auto-Memoization Processor consists of the memoization
engine, MemoTbl and MemoBuf. MemoTbl is a set of
tables for storing input/output sequences of past executed
computation blocks, or instruction regions. MemoBuf works
as a write buffer for MemoTbl.

Entering to a memoizable region, the processor refers to
MemoTbl and compares the current input sequence with the
past input sequences which are stored in MemoTbl. In the
following, we call this comparison ‘reuse test.” If the current
input sequence matches one of the stored input sequences
on MemoTbl, the memoization engine writes back the stored
outputs, which are associated with the matched input sequence,
to the registers and caches. This omits the execution of the
region and reduces the total execution time.

If the current input sequence does not match any past input
sequence, the processor stores the current inputs and outputs
of the region into MemoBuf while executing the region as
usual. The input sequence consists of the register/memory
values which are read over the region, and the output sequence
consists of the values which are written. If the region is a
function, its arguments are also included in the input sequence,
and its return value is also included in the output sequence.
Reaching the end of the region, the memoization engine stores
the content of MemoBuf into MemoTbl for future reuse.

MemoBuf has multiple entries, and each MemoBuf entry
corresponds to one input/output sequence. Each MemoBuf
entry has a stack pointer (SP), a return address (retOfs), an
input sequence (Read), and an output sequence (Write). More-
over, MemoBuf has a stack-like structure, and can manage
nested computation blocks. MemoBuf _top, the stack pointer
for MemoBuf, is incremented when Auto-Memoization Pro-
cessor detects a new computation block, and is decremented
when Auto-Memoization Processor reaches the end of a block.

The structure of MemoTbl is shown in Fig.1. MemoTbl
consists of four tables:

FLTbI: for start addresses of instruction regions.

InTbl: for input value sets of instruction regions.

AddrTbl: for input address sets of instruction regions.

OutTbl: for output data sets of instruction regions.

FLTbl, AddrTbl, and OutTbl are implemented with RAM.
On the other hand, InTbl is implemented with a ternary CAM

for overhead filter

FLTbl
Ovh
index | ForL | addr | P* e hit hist
input (cycles) | read | write
InTbl AddrTbl OutThl
FLTbl | parent | input next ec | change | OutTbl FLTbI | output | output | next
idx idx | values | | addr/reg | flag | flag idx idx addr | values | idx
[ims
Fig. 1. Structure of MemoTbl.

(Content Addressable Memory), so that input values can be
found fast by associative search.

Each FLTbl line corresponds to a reusable computation
block. One FLTbl entry has two groups of fields, the one is
for computation reuse and the other is for the overhead filter
which will be explained later in section II-C. The fields for
computation reuse hold whether the block is a function or
a loop (ForL) and the start address of the block (addr). Each
FLTbl entry holds previous two input sequences for predicting
next input sequences (prev. inputs) for Parallel Speculative
Execution which will be explained later in section II-B. The
fields for the overhead filter hold the execution cycles (S), the
past reuse overhead (Ovh) and the reuse frequency (hit hist).

Each InTbl entry has an index for FLTbl (FLTb! idx), which
represents the associated instruction region, or computation
block, of the input stored in the entry, and holds input values
(input values). Because each InTbl entry can hold single cache
line, an input sequence over multiple cache lines is registered
onto InTbl by using several entries. Hence, each InTbl entry
also holds an index key for its parent entry (key). As input
values are stored by single cache line, computation reuse is not
applied to reusable blocks whose inputs are on non-cacheable
memories. AddrTbl has the same number of entries as InTbl,
and each AddrTbl entry corresponds to the InTbl entry which
has the same index. Each AddrTbl entry has an input address
or a register ID which should be tested next (next adr/reg).
In addition, each AddrTbl entry has two flags. One shows
whether its entry is the terminal entry of an input sequence, or
not (ec flag). The other shows whether the value stored in the
address or the register indicated by next adr/reg is overwritten
after being registered into AddrTbl, or not (change flag).

Each OutTbl entry has FLTbl idx, addresses (output addr)
and values (output values) of an output sequence. Each OutTbl
entry also has an index for next OutTbl entry (next idx)
because an output sequence may be stored over multiple
OutTbl entries.

When Auto-Memoization Processor tries reuse test, the
processor searches FLTbl for the entry whose Index corre-
sponds to the current computation block. Next, the processor
searches InTbl for the entry whose FLTb! idx corresponds with
Index and whose input values match the current input values.
Then, the processor refers to the values stored in the address
or the register indicated by next addr/reg of the AddrTbl



Main Core Speculative Core(s)
reuse_|_ H
ALU Memo | [ fest &store| Memo ALU
Buf Buf
MemoTbl
Write=t=
back npu
Mg¢moizatjop re
ngin.
reuse
—rest ( \
rite
D2$
S
[
T

Fig. 2. Structure of Parallel Speculative Execution.

entry corresponding to the found InTbl entry, and compares
them with the current input values. This process is applied
repeatedly until the processor finds the entry whose ec flag is
set. If the values stored in the address or the register indicated
by next addr/reg is never overwritten after being registered
into InTbl, the processor need not to compare the current input
with the corresponding past input. Hence, Auto-Memoization
Processor skips such useless comparison if change flag of an
entry in AddrTbl is unset.

B. Parallel Speculative Execution

As a matter of course, memoization can omit the execution
of an instruction region only if the current input values for
the region match completely with the input values which are
used in a former execution. Hence, memoization can not be
applied to loop iterations because some input values of a
loop, such as its iterator variable, will monotonously change
in general. To apply computation reuse for loop iterations, we
installed some speculative multi-threading cores called SpC
(speculative cores) to Auto-Memoization Processor. Specula-
tive execution with these cores helps to apply computation
reuse to loop iterations. Fig.2 shows the structure of Auto-
Memoization Processor with three SpCs.

Each SpC has its own MemoBuf and a first level data
cache. The second level data cache and MemoTbl are shared
between all cores. While the main core executes a memoizable
instruction region, SpCs execute the same region using pre-
dicted inputs, and store the results into shared MemoTbl. SpCs
preferentially execute the region whose reuse frequency stored
in hit hist is high. This is because that when the results of
speculative executions for an instruction region are frequently
reused, the instruction region is supposed to be suitable for
Parallel Speculative Execution. The inputs are predicted by
stride prediction using the last two input sets stored in prev.
inputs field of FLTbI. If the input prediction was correct, the
main core can omit intended execution by reusing the result
by one of SpCs. Unlike as other SpMT techniques, even if
the input speculation proves to be incorrect later, the main
core need not to pay a cost for any back-out management.

It only fails reuse test and executes the region as usual. This
extension can omit the execution of instruction regions whose
inputs show monotonous change.

C. Overhead Filter

For some reusable regions, reuse overhead may outweigh
the eliminated execution cycles by reuse. This will go for some
regions which have many input values to be tested, and all tiny
regions. Hence, Auto-Memoization Processor should estimate
the effect of reuse, and avoid memoizing unsuitable instruction
regions. This can reduce useless reuse test and will contribute
to good performance.

Assume that M represents the number of successful reuses
of a certain region for recent 7' times tries (0 < M < T).
The value of M can be retrieved from hit hist. field in FLTbI,
because hit hist. is implemented with a shift register and holds
the history of success or failure of the last T reuse tests. Here,
the value of 7' is the width of the register. With the execution
cycles S of the region, which can be also retrieved from FLTbI,
the reduced cycles can be represented as follows;

M - (S — Ovh® — Ovh™) (1)

where Ovh ' and Ovh"V represent search/writeback overheads
for the region respectively.

Ovh™ also costs when reuse test fails. This overhead can
be calculated as follows.

(T — M) - Ovht )

Here, if the overhead (2) is larger than the expected elim-
inated cycles (1), the computation region cannot be suitable
for reuse. Now, we define the difference between (1) and (2)
as Gain (3). The additional small logic calculates whether
Gain goes positive or negative, and decides the suitability of
computation regions.

Gain = M - (S — Ovh") — T - Ovh® 3)
III. HINTING WITH STATIC BINARY ANALYSIS

In this section, we propose a hinting technique for Auto-
Memoization Processor, and static analysis for generating the
hints.

A. Extracting Characteristics of How Input Values Change

In general, how an input value of a loop changes across
iterations may have a certain characteristic. This characteristic
can affect the performance of computation reuse for loops.
For example, as described in section II-B, Auto-Memoization
Processor uses the characteristic that some input values of a
loop will change monotonously. Considering the character-
istic, the processor predicts input values for following loop
iterations, and omits the executions of the loop iterations
with applying Parallel Speculative Execution. In addition
to such monotonous change, an input of a loop can have
some characteristics; for example, an input value may not
change across iterations, and another input value may change



erratically. Nevertheless, Parallel Speculative Execution mech-
anism predicts that all input values of a loop will change
monotonously, and tries to apply computation reuse to the
loop. Therefore, the processor tries reuse test for the loop
which has unpredictable input values. In such a case, reuse
test hardly ever succeeds, and search overhead for reuse
test continues to increase in vain. This overhead is one of
the factors of performance degradation of Auto-Memoization
Processor. Hence, by extracting characteristics of loop inputs
with binary analysis, we aim to apply computation reuse for
loops efficiently by using the characteristics of how input
values change. In the following, we call the input whose value
will not change across iterations ‘unchanging input’ and the
input whose value changes erratically ‘unmonotonous input.’

Now, the characteristics, which can be extracted, of a loop
input will vary depending on which execution path is selected
by the results of branch instructions. Dynamic analysis can
only extract the characteristics along a certain selected ex-
ecution path, and such characteristics can not be used on
other execution paths. On the other hand, static analysis
can extract the characteristics considering all instructions in
all execution paths of a loop. In this paper, we propose a
technique for detecting loops which have unchanging inputs
or unmonotonous inputs with static binary analysis, and a
technique for hinting the analysis results to Auto-Memoization
Processor.

B. Unchanging Input Values across Iterations

As mentioned in section II-A, Auto-Memoization Processor
skips a comparison of input values when the values stored in
the address which should be tested next are not overwritten
after being registered into AddrTbl. However, the proces-
sor does not skip the comparison of input values stored in
registers. This is because the values stored in the registers
are overwritten more frequently than the values stored in
memories, and the overhead for setting change flag will largely
increase. However, some loops have unchanging inputs stored
in the registers. Now, Fig.3 shows an example code which
includes such a loop, and loopl in the code is the loop
which has an unchanging input. Here, SPARC which is the
base architecture of Auto-Memoization Processor has a branch
delay slot. Therefore, the iteration region of loopl is between
the instruction at address 0x20000 and 0x20010 the delay slot
of the branch instruction at address 0x2000c. When loopl
is analyzed, it is found that %o3 is an input because it is
used as a source for the add instruction at 0x20010, and it
is also found that %03 is not written along the execution
of loopl. Therefore, %03 proves to be an unchanging input.
We analyzed the benchmark programs in SPEC CPU95 and
found that each loop in the programs has two unchanging
inputs on average. Hence, we propose a static analysis for
detecting unchanging register inputs. Such unchanging register
inputs being annotated in binaries, Auto-Memoization Proces-
sor can omit comparing the unchanging inputs and reduce the
overhead of reuse test for loop iterations. In addition, more
loops can be decided as suitable for memoization, and more

00020000<1loopl >:

20000 add %ol, 5, %ol
20004 inc %12

20008 cmp %12, 10

2000c bne 20000 <loopl>

20010 add %ol , %03 ,%ol

o I B L T S O R S

00030000<1oop2 >:

9 30000 add %ol, %12, %ol
10 30004 smul %12, %2, %03
11 30008 inc %l2

12 3000c cmp %12, 10

13 30010 bne 30000 <loop2>
14 30014 add %ol, %03 ,%ol

Fig. 3. Assembly code of loops.

execution cycle can be reduced. This is because that the reuse
test overhead for loops is reduced. In other words, the right
side of eq. (3) becomes smaller and the value of Gain will
be positive in more cases.

C. Erratically Changing Input Values

As mentioned in section II-B, if input prediction was
correct, the main core can omit intended execution by reusing
the result by one of SpCs. However, the main core cannot
omit the execution of loops which has unmonotonous inputs
because input prediction fails. Here, “unmonotonous” means
“changing erratically.” Now, loop2 in Fig.3 is an example of
the loop which has an unmonotonous input. Here, %ol is one
of the input of this loop, and the values in %I2 and %03
are added to the value in %ol every loop iteration. Besides,
these values in %12 and %o03 change every loop iteration.
Hence, %ol is assumed to be an unmonotonous input because
the change amount of the values in %ol is different every
loop iteration. Therefore, the stride prediction for %ol will
fail. Hence, we propose a static analysis for finding such un-
monotonous inputs. Loops which have unmonotonous inputs
being annotated in binaries, Auto-Memoization Processor can
avoid applying computation reuse to such loops, and omit
useless reuse test.

IV. STATIC BINARY ANALYSIS AND BINARY ANNOTATION

In this section, we describe how to analyze a binary program
in order to detect the two types of inputs described in section
III, and we also describe how Auto-Memoization Processor
utilizes the analysis results.

A. How to Analyze a Binary Program

To apply computation reuse for loops efficiently, loops
which have unchanging inputs or unmonotonous inputs need to
be detected with static binary analysis. First of all, to detect
such loops, all loop blocks in a binary program should be
found. As mentioned in section II-A, Auto-Memoization Pro-
cessor detects a region between a backward branch instruction
and its branch target as a loop block. Therefore, backward



branch instructions need to be found by analyzing a binary
program first. A backward branch instruction is a branch
instruction whose target address is lower than the own address
of the branch instruction. Hence, by investigating the target
indicated in the operand of each branch instruction, the branch
proves to be whether a backward branch or not. If a backward
branch instruction is detected, its branch target address is
defined as the start address of the loop and the address of
the instruction following the backward branch instruction (i.e.
the branch delay slot) is defined as the end address of the loop.
In this way, all loops in the binary program are detected.

After all loops are detected, all instructions in the binary
program are analyzed again to search the inputs and outputs of
each loop. Now, for picking up unchanging register inputs, the
registers whose values are read but not written in a loop need
to be found. On the other hand, for picking up unmonotonous
register inputs, the destination registers of instructions whose
source values are overwritten in a loop need to be found.
However, it is difficult to find instructions whose source values
are overwritten in a loop. Therefore, in this paper, we regard
a value on a register, which is a source of an instruction and
also is the destination of multiple arithmetic instructions, as
an unmonotonous register input.

On SPARC-VS processors, eight global registers (GRs),
eight output registers (ORs), eight local registers (LRs), and
eight input registers (IRs) can be used in a function, and 32
floating-point registers can be also used. Therefore, the inputs
and outputs in 64 registers should be analyzed for each loop.

Now, we describe an example of the analysis flow by
using the assembly code shown in Fig.3. First, to detect
backward branch instructions, the binary program is analyzed,
and the instruction at address 0x2000c and the instruction at
address 0x30010 are detected as backward branch instructions.
Therefore, it is found that loopl is from the instruction at
address 0x20000 to the instruction at address 0x20010 and
loop2 is from 0x30000 to 0x30014. Next, to extract character-
istics of inputs of the loops, the binary program is analyzed
again. Then, after loopl is detected at address 0x20000, each
register used in loopl is investigated, and it is found that
the operation code of the instruction at address 0x20000 is
‘add.” Subsequently, the source and the destination register
are checked, and it is found that %ol is an input and an
output of loopl, because %ol is used as a source and the
destination of add instruction. Similarly, the operand registers
of the instruction at address 0x20004 are checked, and it is
found that %I2 is also an input and an output of loopl. On the
other hand, %03 is an input of loop1, because %03 is indicated
as a source of the instruction at address 0x20010. After the
operand registers of the instruction at address 0x20010 is
checked, the analysis about loopl finishes. As a result of
the analysis of loopl, it is found that %o03 is an unchanging
register input. Next, after loop2 is detected at address 0x30000,
each register used in loop2 is investigated, and it is found
that %ol is an input and an output of loop2. In addition, as
%12 is also an input, it is found that %ol is the destination
register of an instruction whose source operands are registers.

1fffc reuse_unchange %03

1

2

3 00020000<loopl >:

4 20000 add %ol, 5, %ol

5 20004 inc %12

6 20008 cmp %12, 10

7 2000c bne 20000 <loopl>
8

20010 add %ol, %03 ,%o0l

Nel

10 2fffc reuse_complex
11 00030000<1oop2 >:

12 30000 add %ol, %12, %ol
13 30004 smul %12, %12, %03
14 30008 inc %l2

15 3000c cmp %12, 10

16 30010 bne 30000 <loop2>
17 30014 add %ol, %03 ,%ol

Fig. 4.  An example for inserting dedicated instructions.

Similarly, the operand registers of the instruction at address
0x30014 are checked, and it is found that %ol is indicated
as a source and the destination of the instruction and %03 is
indicated as a source of the instruction. Therefore, it is found
that %o1 is the destination register of two instructions whose
source operands are registers. After the operand registers of
the instruction at address 0x30014 are checked, the analysis
about loop?2 finishes. As a result of the analysis of loop2, %ol
is regarded as an unmonotonous register input.

B. How to Utilize Static Analysis Results

Characteristics of input values of each loop in a binary
program can be extracted as the result of static analysis. A
hinting technique, which is based on results of compiler’s
flow-analysis, for computation reuse was proposed [6],[7]. In
this technique, to utilize the analysis results, some instructions
are annotated. Similarly, to utilize the analysis results on
Auto-Memoization Processor, loops should be annotated in
a binary program. Specifically, we define some dedicated in-
structions, and annotates loops which have unchanging inputs
or unmonotonous inputs by inserting the dedicated instructions
just before the loops. We extend SPARC ISA by adding two
dedicated instruction reuse_unchange and reuse_complex. The
reuse_unchange instruction indicates that a loop following the
reuse_unchange instruction has unchanging register inputs. In
addition, unchanging register inputs are indicated in operand
fields of the reuse_unchange instruction. In mnemonic form,
registers written behind the reuse_unchange instruction indi-
cate unchanging register inputs. When a loop is found just
after Auto-Memoization Processor detects a reuse_unchange
instruction, the processor skips the comparison for the registers
indicated in the operands of the reuse_unchange instruction.
On the other hand, the reuse_complex instruction indicates
that a loop following the reuse_complex instruction has un-
monotonous register inputs. When the processor detects a
reuse_complex instruction, the processor does not try reuse



TABLE I
SIMULATION PARAMETERS.

MemoBuf 64 KBytes
MemoTbl CAM 128 KBytes
MemoTbl small CAM 8 KBytes

Comparison (register and CAM)
Comparison (Cache and CAM)
Write back (MemoTbl to Reg./Cache)

9 cycles/32 Bytes
10 cycles/32 Bytes
1 cycle/32 Bytes

DI cache 32 KBytes
line size 32 Bytes
ways 4 ways
latency 2 cycles
miss penalty 10 cycles

D2 cache 2 MBytes
line size 32 Bytes
ways 4 ways
latency 10 cycles
miss penalty 100 cycles

Register windows 4 sets

miss penalty 20 cycles/set

test for the loop following the reuse_complex instruction. In
the current implementation, these instructions are inserted in
not a binary code but an assembly code. Inserting into a binary
code is one of our future works. Now, Fig.4 shows an example
for inserting the dedicated instructions into the assembly code
shown in Fig.3. Here, a reuse_unchange instruction is inserted
just before the start address of loopl for indicating loopl has
the unchanging register %03. This reuse_unchange instruction
is executed before the execution of loopl, and it can be
found that %03 does not change in loopl. Therefore, when
the processor tries reuse test for loopl, the processor skips
the comparison of %03 for reducing the search overheads.
On the other hand, the reuse_complex instruction is inserted
just before the start address of loop2 for indicating that loop2
has some unmonotonous register inputs. Therefore, when this
reuse_complex instruction is executed before the execution
of loop2, the processor does not try reuse test for loop2 for
reducing the search overheads which are caused in the case
Auto-Memoization Processor fails reuse test.

V. PERFORMANCE EVALUATION

We have implemented the above-mentioned software and
hardware extension on a processor simulator with auto-
memoization structures. This section describes the evaluation
results with the simulator.

A. Simulation Environment

We have developed a single-issue SPARC-V8 simulator
equipped with the auto-memoization mechanisms and three
SpCs. In this section, we will discuss the practicality of
the proposed hinting technique in this paper. The simulation
parameters are shown in TABLE I. The cache structure and
the instruction latencies are based on SPARC64-II1[8]. The on-
chip CAM for InTbl in MemoTbl is modeled on DC18288[9]
(32Bytes x 4K lines). The latencies of the CAM are defined
on the assumption that the clock frequency of the processor
is about 2 GHz, and is 10-times higher than the CAM.

B. Execution Cycles with SPEC CPU95

We have evaluated the proposed hinting technique by exe-
cuting all benchmark programs in SPEC CPU95 suites with
‘train’ dataset. All benchmark programs are compiled by gcc
version 3.0.2 with ‘-msupersparc -O2’ option, and linked
statically. We have evaluated following four processors;

(N)  No-memoization processor. (baseline)

(M) Previous Auto-Memoization Processor.

(U)  Auto-Memoization Processor with the hinting tech-
nique for skipping the comparison of unchanging
register inputs.

(C)  Auto-Memoization Processor based on (U) with the

hinting technique for stopping computation reuse for
the loop which has an unmonotonous input.

and Fig.5 shows the execution cycles of these processors. Each
bar is normalized to the number of executed cycles of (N). The
legend in Fig.5 shows the breakdown items of total cycles.
They represent the executed instruction cycles (‘exec’), the
comparison overhead between CAM and the registers or the
caches (‘read’), the writeback overhead (‘write’), the first-
level and shared second-level data cache miss penalties (‘D$1°,
‘D$2’), and the register window miss penalty (‘window’)
respectively.

First, with many benchmark programs, the performance of
(U) Auto-Memoization Processor with the hinting technique is
higher than (M) previous Auto-Memoization Processor. Espe-
cially, with 124.m88ksim, 134.perl, 107.mgrid and 125.turb3d,
‘read’ is reduced. This means that the search overhead is
reduced by skipping a comparison of unchanging register
inputs. On the other hand, with some programs such as
101.tomcatv and 102.swim, ‘exec’ is reduced. This means that
Auto-Memoization Processor omits the execution of some loop
iterations. This is because search overhead of (U) becomes
smaller than that of (M), and Auto-Memoization Processor can
apply computation reuse for some loops which are decided as
unsuitable for memoization on (M).

However, with 130.1i, the performance of (U) is lower than
that of (M) because ‘read’ is increased. This means that some
loops in 130.1i can be also decided as suitable for memoization,
but reuse test for them cannot succeed.

Secondly, the performance of (C) Auto-Memoization Pro-
cessor with hinting technique is higher than that of (U) with
129.compress, 134.perl, 107.mgrid, 125.turb3d, and 141.apsi.
Especially, ‘read’ of 129.compress is reduced without increas-
ing ‘exec.’ This means that the search overhead is reduced
by stopping computation reuse for the loops which have un-
monotonous inputs. On the other hand, with many benchmark
programs such as 124.m88ksim, 101.tomcatv and 102.swim,
the performance of (C) provides almost the same performance
as (U). This means that most of the loops which have un-
monotonous inputs can not be detected because the criteria
for the unmonotonous inputs are inaccurate. Meanwhile, with
104.hydro2d, the performance of (C) is lower than that of (U)
because ‘exec’ is increased. This means that computation reuse
for some loops can be applied on (U), but computation reuse



(N): No Memoization
—(M): Memoization

—(U): Avoiding Matching Unchanging Registers in Loops
—— (C): (U)+Avoiding Memoizing Complex Loops

Ratio of cycles

Fig. 5.

for the loops cannot be applied on (C). This reason is that
the characteristics, which are used on the proposed hinting
technique, of loop inputs are extracted from all instructions
in loops. Therefore, if only a part of instructions in loops are
executed because of branch instructions, the extracted char-
acteristics may be incorrect. In this case, the stride prediction
for the inputs which are detected as unmonotonous inputs may
succeed. This means that 104.hydro2d has the loop which does
not have unmonotonous inputs and can be applied computation
reuse. However, on (C), computation reuse is not applied to
the loop. Therefore, the performance of (C) is lower than that
of (U).

In conclusion, the performance of Auto-Memoization Pro-
cessor with the hinting technique is better than the previous
Auto-Memoization Processor as a whole. The previous Auto-
Memoization Processor (M) reduces the cycle by 40.6% in
maximum and by 11.9% in average while Auto-Memoization
Processor with the hinting technique (U) reduces the cycles
by 51.4% in maximum and by 16.7% in average, and Auto-
Memoization Processor with the hinting technique (C) reduces
the cycle by 51.8% in maximum and by 16.5% in average.
Comparing (C) with (M), (C) reduces the cycle by 27.6% in
maximum and by 5.3% in average.

VI. CONCLUSIONS

In this paper, we proposed a hinting technique for Auto-
Memoization Processor based on static binary analysis. First,
we described a static analysis for detecting unchanging input
values and erratically changing input values in loops. We
also described a hinting technique, which is based on the
static analysis results, for reducing reuse overheads. By an-
notating unchanging inputs, useless reuse test was reduced,

Evaluation(SPEC CPU95).

and by annotating loops which have erratically changing
inputs, useless computation reuse was restrained. Through an
evaluation with SPEC CPU95 benchmark suite programs, it
is found that Auto-Memoization Processor with the hinting
technique improves the maximum cycle reduction ratio from
40.6% to 51.8%, and the average ratio from 11.9% to 16.5%.
One of our future works is to improve a static analysis for
detecting loop inputs which change erratically. This enables
Auto-Memoization Processor to avoid increasing the search
overheads which are caused in the case the processor fails
reuse test for such loops.

REFERENCES

[1] ARM Ltd, The ARM Cortex-A9 Processors, Sep 2007.

[2] T. Tsumura et al., “Design and evaluation of an auto-memoization
processor,” in Proc. Parallel and Distributed Computing and Networks,
Feb. 2007, pp. 245-250.

[3] K. Kamimura et al., “A speed-up technique for an auto-memoization

processor by reusing partial results of instruction regions,” in Proc. 3rd

Int’l Conf. on Networking and Computing (ICNC’12), Dec. 2012, pp.

49-57.

P. Norvig, Paradigms of Artificial Intelligence Programming.

Kaufmann, 1992.

J. Huang and D. J. Lilja, “Exploiting basic block value locality with

block reuse,” in Proc. 5th Int’l Symp. on High-Performance Computer

Architecture (HPCA-5), Jan. 1999, pp. 106-114.

, “Exploring sub-block value reuse for superscalar processors,”
in Proc. 2000 Int’l Conf. on Parallel Architectures and Compilation
Techniques (PACT’00), 2000, pp. 100-107.

[7] D. A. Connors et al., “Hardware support for dynamic activation of
compiler-directed computation reuse,” in Proc. 9th Int’l Conf. on Ar-
chitectural Support for Programming Languages and Operating Systems
(ASPLOS-9), 2000, pp. 222-233.

[8] SPARC64-1II User’s Guide, HAL Computer Systems/Fujitsu, May 1998.

[9] MOSAID Technologies Inc., Feature Sheet: MOSAID Class-IC DC18288,
1st ed., Feb. 2003.

[4

—_

Morgan

[5

—_

(6]





