
CAM Size Reduction Method for
Auto-Memoization Processor

by considering Characteristics of Loops
Yuuki SHIBATA∗, Kazutaka KAMIMURA∗, Tomoaki TSUMURA∗,

Hiroshi MATSUO∗ and Yasuhiko NAKASHIMA†

∗Nagoya Institute of Technology
Gokiso, Showa, Nagoya, Japan

Email: camp@matlab.nitech.ac.jp

†Nara Institute of Science and Technology
8916-5, Takayama, Ikoma, Nara, Japan

Email: nakashim@is.naist.jp

Abstract—We have proposed a processor called Auto-
Memoization Processor which is based on computation reuse, and
merged it with speculative multi-threading based on value pre-
diction into a mechanism called Parallel Speculative Execution.
The processor has table called Reuse Table for registering inputs
and outputs of computation blocks. The table is implemented
by a ternary CAM, and input sequences are stored onto the
table. The past model cannot efficiently use Reuse Table entries
because the purging algorithm for Reuse Table is too simple. This
paper proposes a new algorithm for purging useless entries based
on characteristics of loops. We also propose a new storing and
searching filter against useless entries for loops. The evaluation
result with SPEC CPU95 benchmark suite shows that these
mechanisms allow Reuse Table to be implemented with a smaller
CAM without any performance degradation.

Index Terms—microprocessor architecture, computation reuse,
memoization, Auto-Memoization Processor.

I. INTRODUCTION

So far, various speed-up techniques for microprocessors
have been proposed. The performance of microprocessors had
been controlled by the gate latencies, and it had been rela-
tively easy to speed-up microprocessors by transistor scaling.
However, the interconnect delay has been going major, and
it has become difficult to achieve speed-up only by higher
clock frequency. Therefore, speed-up techniques based on ILP
(Instruction-Level Parallelism), such as superscalar or SIMD
instruction sets, have been counted on.

Traditional speed-up techniques mentioned above are all
based on some parallelisms in different granularities. Mean-
while, we have proposed a processor called Auto-Memoization
Processor based on computation reuse[1][2]. The processor has
table called Reuse Table for registering inputs of computation
blocks. The table is implemented by a ternary CAM, and input
sequences are stored onto the table. As a speedup technique,
memoization has no relation to parallelism of programs. It de-
pends upon value locality, especially input values of functions

or loops. Therefore, memoization can achieve speed up on the
programs which do not have much ILP.

We have also proposed a mechanism called Parallel Spec-
ulative Execution. It predicts the inputs for a reusable loop
iteration, and additional shadow cores execute the iteration
speculatively. The shadow cores store the results of the specu-
lative executions onto Reuse Table. If the value prediction for
inputs is correct, the stored outputs can be reused by the main
core and execution time will be reduced.

However, some input values of a loop, such as an iterator
variable of the loop, will generally change monotonously.
Therefore, Reuse Table entries for an loop iteration executed
by the main core will not be reused in future, but the traditional
purging algorithm for Reuse Table does not distinguish such
entries and other entries. Hence, the past model can not
efficiently use Reuse Table.

In this paper, we propose a new algorithm for purging
useless entries based on characteristics of loops. We also
propose a new storing and searching filter against useless
entries for loops. These mechanisms allow Reuse Table to
be implemented with a smaller CAM without any perfor-
mance degradation, and the energy consumption of Auto-
Memoization Processor can be reduced.

II. RELATED WORK

Studies for extracting ILPs with speculative executions
based on value prediction have been proposed by Lipasti et
al.[3] and Wang et al.[4] Many speculative multi-threading
(SpMT) models also have been proposed. They have multiple
processors or cores, and run threads speculatively using pre-
dicted value sets. In an SpMT model, a speculative thread will
generally squashed when its input values are overwritten by
the main thread.

Roth et al.[5] have proposed register integration. It is a
mechanism for reusing the results of squashed instructions by

tsumura
テキストボックス
This paper is author's private version of the paper published as follows:
Proc. 1st Int'l Symp. on Computing and Networking (CANDAR'13), pp.378-374
Copyright (C) 2013 IEEE

writing back the past register mapping. It is shown that the
model can provide performance improvements of up to 11.5%.

Some hybrid methods of computation reuse and value
prediction have been also studied. Wu et al.[6] have proposed
a speculative multi-threading supported by computation reuse.
In the model, the compiler identifies instruction regions for
reuse or value prediction. At runtime, if a region cannot
be reused, the processor predicts the outputs of the region,
and speculatively executes its following instructions using
the predicted values. Hence, if the value prediction fails,
the speculative executions should be squashed, and it costs
additional hardware and overhead for the squash.

Molina et al.[7][8] have proposed a combination model of
speculative thread and non-speculative thread. The execution
results of speculative thread are stored into a FIFO , and non-
speculative thread picks up instructions from the FIFO. If the
current source operands and the stored operands are same, the
non-speculative thread reuses the execution results and skips
execution.

In contrast to these studies, Parallel Speculative Execution
which we have proposed is a non-symmetric SpMT model
based on value prediction, and uses computation reuse tech-
nique. Our model has two advantages over [6]. The one is
that compiler-assist is not required for computation reuse. The
other is that there is no need to squash speculative execu-
tions. Molina’s model [7] is similar to our model. However,
our model can reuse some instruction regions which require
memory read as their inputs.

III. RESEARCH BACKGROUND

In this section, we describe Auto-Memoization Processor
and Parallel Speculative Execution as the background of our
study.

A. Auto-Memoization Processor

Computation reuse is a well-known speed-up technique
in the software field. It is storing the input sequences and the
results of some computation blocks, such as functions, for later
reuse and avoiding recomputing them when the current input
sequence matches one of the past input sequences. It is called
memoization[9] to apply computation reuse to computation
blocks in programs.

Auto-Memoization Processor, which we have proposed,
executes traditional load-modules faster without any software
assist. There is no need to rewrite or recompile programs. This
processor dynamically detects functions and loop iterations as
reusable blocks, and memoizes them automatically.

Auto-Memoization Processor consists of the memoization
engine, MemoTbl and MemoBuf. MemoTbl is a set of
tables for storing input/output sequences of past executed
computation blocks, or instruction regions. MemoBuf works
as a write buffer for MemoTbl.

Entering to a memoizable region, the processor refers to
MemoTbl and compares the current input sequence with past
input sequences which are stored in MemoTbl. If the current
input sequence matches one of the stored input sequences

Fig. 1. Structure of MemoTbl.

on MemoTbl, the memoization engine writes back the stored
outputs, which are associated with the input sequence, to the
registers and caches. This omits the execution of the region
and reduces the total execution time.

If the current input sequence does not match any past input
sequence, the processor stores the current inputs and outputs
of the region into MemoBuf while executing the region as
usual. The input sequence consists of the register/memory
values which are read over the region, and the output sequence
consists of the values which are written. If the region is
a function, its return value is also included in the output
sequence. Reaching the end of the region, the memoization
engine stores the content of MemoBuf into MemoTbl for
future reuse.

MemoBuf has multiple entries, and each MemoBuf entry
corresponds to one input/output sequence. Each MemoBuf
entry has a stack pointer (SP), a return address (retOfs), an
input sequence (Read), and an output sequence (Write). More-
over, MemoBuf has a stack-like structure, and can manage
nested computation blocks. MemoBuf top, the stack pointer
for MemoBuf, is incremented when Auto-Memoization Pro-
cessor detects a new computation block, and is decremented
when Auto-Memoization Processor reaches the end of a block.

The structure of MemoTbl is shown in Fig.1. MemoTbl
consists of four tables:

FLTbl: for start addresses of instruction regions.
InTbl: for input data sets of instruction regions.
AddrTbl: for input address sets of instruction regions.
OutTbl: for output data sets of instruction regions.
In the following, we call the three tables other than FLTbl

‘IAO-tables.’ In addition, we call each IAO-tables entry for
loop ‘loop entry’ and each IAO-tables entry for function
‘function entry.’

FLTbl, AddrTbl, and OutTbl are implemented with RAM.
On the other hand, InTbl is implemented with a ternary CAM
(Content Addressable Memory), so that inputs can be found
fast by associative search.

Each FLTbl line corresponds to a reusable computation
block. One FLTbl entry has two groups of fields, the one is
for computation reuse and the other is for the overhead filter
which will be explained later in section III-C. The fields for
computation reuse hold whether the block is a function or a
loop (F or L) and the start address of the block (addr). Each
FLTbl entry holds previous two input sequences for predicting
next input sequences (prev. inputs) and core-IDs which are

Fig. 2. Structure of Parallel Speculative Execution.

assigned to the execution of the loop iterations (pred. dist.) for
Parallel Speculative Execution which will be explained later
in section III-B. The fields for the overhead filter hold the
execution cycles (S) and the past reuse overhead (Ovh).

Each InTbl entry has an index for FLTbl (FLTbl idx), which
represents the associated instruction region, or computation
block, of the input stored in the entry, and holds input values
(input values). Because each InTbl entry can hold single cache
line, an input sequence over multiple cache lines is registered
onto InTbl by using several entries. Hence, each InTbl entry
also holds an index key for its parent entry (key).

AddrTbl has the same number of entries as InTbl, and each
AddrTbl entry corresponds to the InTbl entry which has the
same index. Each AddrTbl entry has an input address which
should be tested next (next adr).

Each OutTbl entry has FLTbl idx, addresses (output addr)
and values (output values) of an output sequence. Each OutTbl
entry also has an index for next OutTbl entry (next idx) because
an output sequence is stored over multiple OutTbl entries.

B. Parallel Speculative Execution

As a matter of course, memoization can omit the execution
of an instruction region only if the current input values for the
region match completely with the input values which are used
in former execution. Hence, memoization can not be applied to
loops because some input values of a loop, such as an iterator
variable, will monotonously change in general.

Now, we installed some speculative multi-threading cores
called SpC (speculative cores) to Auto-Memoization Proces-
sor. These cores help the unsuitable regions for memoiza-
tion mentioned above. Fig.2 shows the structure of Auto-
Memoization Processor with three SpCs.

Each SpC has its own MemoBuf and a first level data cache.
The second level data cache and MemoTbl are shared between
all cores. While the main core executes a memoizable instruc-
tion region, SpCs execute the same region using predicted
inputs, and store the results into shared MemoTbl. The inputs
are predicted by stride prediction using the last two input sets
stored in prev. inputs field of FLTbl. If the input prediction was
correct, the main core can omit intended execution by reusing
the result by one of SpCs. Unlike as other SpMT methods,
even if the input speculation proves to be incorrect later, the

main core need not to pay a cost for any back-out management.
It only fails reuse test and executes the region as usual. This
extension can omit the execution of instruction regions whose
inputs show monotonous change.

C. Overhead Filter

For some reusable blocks, reuse overhead may outweigh the
eliminated execution cycles by reuse. This will go for some
blocks which have many input values to be tested, and all tiny
blocks. Hence, Auto-Memoization Processor has a structure
which estimates the effect of reuse, and avoids memoizing
unsuitable computation blocks. With the execution cycles S
of the block, the processor calculates the performance gain
in terms of omitted cycles as S − OvhR − OvhW where
OvhR and OvhW represent search/writeback overheads for
the computation block respectively. If this value is negative,
applying memoization will decrease the performance, and the
processor stops reusing the block.

D. Purging Mechanisms for MemoTbl

Auto-Memoization Processor has two mechanisms for purg-
ing entries from MemoTbl. TSID Purge is a purging mech-
anism which selects victim entries based on LRU and purges
the entries from IAO-tables. Auto-Memoization Processor has
a ring counter for holding the current time stamp. When an
entry is newly-stored or used for applying computation reuse,
the current value of the ring counter is copied to TSID field
of the entry. In addition, every time a certain number of new
entries are stored into IAO-tables, the value of the ring counter
is incremented and all entries which have the same time stamp
as the updated ring counter value are purged from IAO-tables.

FLID Purge is the other mechanism for purging all entries
which are associated with a selected computation block when
FLTbl or IAO-tables overflows. In the case FLTbl overflows,
the computation block which is estimated to have least benefits
from computation reuse on the basis of overhead filter is
selected as the victim block and all entries which are as-
sociated with the block are purged from MemoTbl. On the
other hand, in the case IAO-tables overflows, the computation
block currently being executed is selected as the victim and all
entries which are associated with the block are purged from
IAO-tables.

IV. EFFICIENT PURGING ALGORITHM BASED ON
CHARACTERISTICS OF LOOPS

In this section, we will propose a new purging algorithm
for Reuse Table based on characteristics of loops. We will
also propose a new storing and searching filter against the
loop entries which are not expected to be reused.

A. Loop Iteration Purge

In general, some input values of a loop, such as an iterator
variable of the loop, will monotonously change. Therefore,
a loop entry corresponding to an iteration executed by the
main core should not be reused in future. In the following,
we call the loop entries which are not expected to be reused

‘useless loop entries.’ Now, the traditional purging algorithm
for Reuse Table does not distinguish useless loop entries and
other entries. Thus, beneficial entries can be purged for storing
useless loop entries. To solve this problem, we propose a new
algorithm for purging useless loop entries from IAO-tables. In
the following, we call this purging algorithm ‘loop iteration
purge.’

B. Loop Iteration Storing Filter

As mentioned above, useless loop entries can be purged
from IAO-tables by loop iteration purge. However, there are
loop entries which will not be reused even once if they are
stored into IAO-tables. Such entries are divided into following
four types.

(A) Loop entries which are stored by the main core.
(B) Loop entries which are stored by an SpC after the

main core starts executing the same iteration.
(C) Loop entries which are stored by an SpC when the

SpC start executing an outer loop in the nested loop
and has executed the inner loop in the nested loop.

(D) Loop entries which are stored by an SpC when the
main core has already broken out the loop.

(A)-type entries are not expected to be reused even if the
entries are kept in IAO-tables. This is because the iterator value
of a loop generally changes monotonously and each iteration
of loop is never executed with the same input sequence.

(B)-type entries are not expected to be reused with the same
reason as for (A)-type entries. This is because the iteration
which the main core has already started is never executed with
the same input sequence.

(C)-type entries are not expected to be reused because the
input values of the inner loop usually depend on the calculation
in the outer loop, and the main core will usually fail to reuse
the inner iteration when the main core fails to reuse the outer
iteration.

(D)-type entries are not expected to be reused because the
entries are associated with the loop iterations which exceed
the limit of the loop count and can not be executed by the
main core.

For these reasons, we propose a new mechanism for avoid-
ing storing these four types of entries into IAO-tables. In the
following, we call this mechanism ‘loop iteration storing
filter.’ Loop iteration storing filter and loop iteration purge
enable MemoTbl to be efficiently used because useless loop
entries will not be stored in IAO-tables.

C. Loop Iteration Searching Filter

Previous Auto-Memoization Processor searches MemoTbl
even if the execution result for the iteration which will be
executed next by the main core are not stored in IAO-
tables. However, as mentioned above, a loop entry can be
reused only if the entry is stored by an SpC before the main
core starts executing the corresponding iteration. Hence, we
propose a new mechanism for avoiding searching IAO-tables
by managing which iterations have been executed by SpCs and
which have not yet. In the following, we call this mechanism

Fig. 3. Structures of pred. dist. and liid list.

‘loop iteration searching filter.’ This mechanism enables to
reduce search overhead, keeping hit rate of reuse for loops.

V. IMPLEMENTATION

This section describes how we implement the three new
mechanisms.

A. Hardware Extension for Loop Iteration Purge

We will discuss the hardware extension for loop iteration
purge. To implement loop iteration purge, each loop iteration
and the loop entry for the iteration must be associated with
each other. Auto-Memoization Processor assigns some upcom-
ing iterations to each SpC without overlap, and manages the
mapping from core-IDs of SpCs to the iterations using pred.
dist. When an SpC finishes a loop iteration, by using pred.
dist., the SpC can know the iteration is how much prior to the
current iteration which the main core is now executing. We
define an unique ID called ‘iteration ID’ for each iteration,
and we have added a new set of fields called liid list in
FLTbl for storing iteration IDs. Auto-Memoization Processor
can distinguish an iteration from other iterations by examining
the iteration IDs in liid list. In addition, we have also added
the new field liid in InTbl and OutTbl for storing the iteration
ID. By comparing the iteration ID of the iteration executed
by the main core with iteration IDs of the loop entries stored
in IAO-tables, the main core can find the loop entries which
should be purged from IAO-tables.

Fig.3 shows the structures of pred. dist. and liid list. In
this figure, the leftmost field in pred. dist. corresponds to
the iteration which is being executed by the main core, and
SpC3 is stored there. When the main core has executed a loop
iteration or omitted execution of a loop iteration, each core-
ID which is stored in pred. dist. is shifted left. Meanwhile,
each field in liid list is also shifted left. Then, the iteration
corresponding to the rightmost field in pred. dist. have not
been assigned to any cores yet. In this figure, ‘-1’ is stored
in the rightmost field in pred. dist. This value means that the
execution of the iteration have not been assigned to any cores
yet. In addition, the iteration ID which is pushed out from the
leftmost field is set to the rightmost field in liid list and reused
to limit the maximum bit width for iteration IDs.

Next, we discuss the execution model of loop iteration purge
with the storing and purging flow of loop entries shown in
Fig.4. When SpC1 stores a loop entry, the state of MemoTbl
is as shown in Fig.4 (X). After that, when the main core purges

Fig. 4. Storing and purging flow of loop entries.

the loop entry which is stored by SpC1, the state of MemoTbl
becomes as shown in Fig.4 (Y). First, when SpC1 stores the
loop entry, SpC1 searches the pred. dist. fields for the core-ID
of SpC1 to fetch the ID of the iteration which was executed
speculatively by SpC1 (a). Then, SpC1 fetches the iteration ID
‘10’ from liid list (b) and stores the ID into liid field of the
entry which is stored in IAO-tables by SpC1. Next, assume
that the main core completes the execution of the iteration
which has ID ‘9.’ Then, as mentioned before, each field in
pred. dist. and liid list is shifted left, and pred. dist. and liid
list become as shown in (Y). Next, assume that the main core
omits the execution of the loop iteration which has ID ‘10’ by
computation reuse. Then, the main core fetches the iteration
ID from the leftmost field of liid list for purging the loop entry
which was reused (d). Finally, the main core purges the loop
entry which has the same ID as the fetched ID. Incidentally,
when the main core fails to reuse the loop iteration which has
ID ‘10,’ the main core purges the loop entry similarly.

B. Hardware Extension for Loop Iteration Storing Filter

We discuss how Auto-Memoization Processor avoids storing
four types of loop entries in IAO-tables described in section
IV-B.

To avoid storing (A)-type entries, the main core has to deter-
mine whether each executed instruction region is a function or
a loop. If the main core finishes an loop iteration while ForL
indicates that it is a loop entry, the main core avoids storing
the entries into IAO-tables.

To avoid storing (B)-type entries, an SpC has to determine
whether the main core has already started executing the
iteration which has been executed speculatively by the SpC,
or not. If an SpC stores loop entries while the core-ID of the
SpC is in the leftmost field in pred. dist. or the core-ID of the
SpC is not in any fields in pred. dist., the SpC avoids storing
the loop entries. This is because the SpC finds that the main

core has already started executing the iteration which has been
executed speculatively by the SpC.

To avoid storing (C)-type entries, SpCs have to distinguish
an outer loop in the nested loop from inner loops. Hence,
we have added the new field start flag in MemoBuf for
determining whether SpCs have started Parallel Speculative
Execution for loops or not. When an SpC starts Parallel
Speculative Execution for a loop, start flag of the MemoBuf
entry which is pointed by MemoBuf top is set. Next, entering
to the inner loop, MemoBuf top is incremented. Then, the
SpC do not set start flag of the entry which is pointed by
MemoBuf top. This is because the SpC has already started
Parallel Speculative Execution for the loop outside of the inner
loop. If an SpC finishes a loop iteration while start flag of the
MemoBuf entry which is pointed by MemoBuf top is set, the
SpC stores the loop entries into IAO-tables. This is because
the SpC finds that the loop is the outermost loop where the
SpC has started Parallel Speculative Execution. On the other
hand, if an SpC finishes a loop iteration while start flag of the
MemoBuf entry which is pointed by MemoBuf top is not set,
the SpC avoids storing the loop entries into IAO-tables. This
is because the SpC finds that the loop is an inner loop.

To avoid storing (D)-type entries, SpCs have to determine
whether or not the main core is still executing the loop which
the SpCs are now executing. Hence, we have added the new
field exec flag in FLTbl for determining it. When the main core
starts executing a loop, exec flag corresponding to the loop is
set. If the backward branch is not-taken and the main core
breaks out of the loop, exec flag corresponding to the loop
is cleared. If an SpC finishes a loop iteration while exec flag
corresponding to the loop is not set, the SpC avoids storing
the loop entries.

C. Hardware Extension for Loop Iteration Searching Filter

To implement loop iteration searching filter, the main core
has to determine whether loop entries for the loop iteration
which will be executed next by the main core have been stored
yet by one of the SpCs or not. Hence, we have added the new
set of fields search flag in FLTbl for determining it. When
an SpC finishes a iteration, the field of search flag which
indicates the iteration is set. In addition, every time the main
core completes the execution of an iteration, search flag is
shifted left as pred. dist. and liid list. If the leftmost field in
search flag is set, the main core searches MemoTbl. This is
because loop entries for the iteration which will be executed
next by the main core are already stored in IAO-tables by
SpCs. On the other hand, if the leftmost field in search flag
is not set, the main core avoids searching MemoTbl because
SpCs have not completed executing the iteration speculatively
yet.

VI. PERFORMANCE EVALUATION

We have implemented the above-mentioned hardware exten-
sion on a processor simulator with auto-memoization struc-
tures. This section describes the evaluation results with the
simulator.

TABLE I
SIMULATION PARAMETERS

MemoBuf 64 KBytes
MemoTbl CAM modeled on DC18288 (L-latency) 128 KBytes
MemoTbl CAM modeled on eFlexCAM (L-latency) 8 KBytes
MemoTbl CAM modeled on eFlexCAM (S-latency) 8 KBytes
L-latency

Comparison (register and CAM) 9 cycles/32Bytes
Comparison (Cache and CAM) 10 cycles/32Bytes

S-latency
Comparison (register and CAM) 3 cycles/32Bytes
Comparison (Cache and CAM) 4 cycles/32Bytes

Write back (MemoTbl to Reg./Cache) 1 cycle/32Bytes
D1 cache 32 KBytes

line size 32 Bytes
ways 4 ways
latency 2 cycles
miss penalty 10 cycles

D2 cache 2 MBytes
line size 32 Bytes
ways 4 ways
latency 10 cycles
miss penalty 100 cycles

Register windows 4 sets
miss penalty 20 cycles/set

A. Simulation Environment

We have developed a single-issue SPARC-V8 simulator
equipped with the auto-memoization mechanisms and three
SpCs. In this section, we will discuss the performance of
the new model proposed in this paper. The simulation pa-
rameters are shown in TABLE I. The cache structure and
the instruction latencies are based on SPARC64-III[10]. To
confirm whether the performance degradation with a smaller
CAM is suppressed with proposed mechanisms or not, we
have evaluated a model with each two types of CAMs. One is
modeled on DC18288[11] and we define the size of the CAM
as 128KBytes (32Bytes × 4K lines). The other is modeled
on eFlexCAM[12] and we define the size of the CAM as
8KBytes (32Bytes × 256 lines). The latencies of these two
types of CAMs are defined on the assumption that the clock
of the processor is about 2GHz, and is 10-times faster than the
128KBytes CAM, and 4-times faster than the 8KBytes CAM.
We call the access latency for the 128KBytes CAM ‘L-latency’
and the access latency for the 8KBytes CAM ‘S-latency.’
We have also evaluated the model that the size of the CAM
is 8KBytes and the latency is L-latency. By comparing the
change in the performance which is caused by the difference
in the size of CAMs, we can evaluate the benefits from the
proposed model.

B. Execution Cycles with SPEC CPU95

We have evaluated the new proposed model by executing are
all benchmark programs in SPEC CPU95 suites with ‘train’
dataset. All benchmark programs are compiled by gcc version
3.0.2 with ‘-msupersparc -O2’ option, and linked statically.
The evaluation results are shown in Fig.5. We have evaluated
following six models,

(N) No-memoization model. (baseline)
(M128K) Previous memoization model with 128KBytes CAM.

(M8K) Previous memoization model with 8KBytes CAM
and L-latency.

(P8K) The model based on (M8K) with proposed loop
iteration purge and loop iteration storing filter.

(C8K) The model based on (P8K) with proposed loop iter-
ation searching filter.

(C
′

8K) The model based on (C8K) with S-latency.
and Fig.5 shows the execution cycles of these models. Each
bar in Fig.5 is normalized to the number of executed cycles
of (N) the model without memoization.

The legend in Fig.5 shows the breakdown items of total
cycles. They represent the executed instruction cycles (‘exec’),
the comparison overhead between CAM and the registers
or the caches (‘read’), the writeback overhead (‘write’),
the first-level and the shared second-level data cache miss
penalties (‘D$1’, ‘D$2’), and the register window miss penalty
(‘window’) respectively.

First, in many benchmark programs such as 147.vortex,
101.tomcatv and 107.mgrid, the performance of (M8K) is lower
than (M128K). This means that some computation blocks which
can be reused with the previous model (M128K) was not really
reused with (M8K). This is because the number of CAM entries
is decreased and beneficial entries which are expected to be
reused tend to be purged with (M8K).

On the other hand, with many programs such as 101.tomcatv
and 107.mgrid, the proposed model (P8K) provides almost the
same performance as the previous model (M128K). This means
that in many programs, the usage efficiency of MemoTbl
increases and the performance degradation with the 8KBytes
CAM is suppressed by purging useless loop entries and
avoiding storing useless loop entries.

However, with 130.li, 134.perl and 147.vortex, the perfor-
mance degradation with the 8KBytes CAM can not be much
suppressed. Among them, with 130.li and 147.vortex, the
proposed model (P8K) can not help because the most of IAO-
tables entries are function entries. Next, with 134.perl, it takes
much time before a function entry is reused after it is stored
into IAO-table. Thus, these functions can not be reused and
the performance degradation by reducing the CAM size can
not be suppressed.

Next, in all programs, the proposed model (C8K) provides
almost the same performance as the proposed model (P8K)
or more higher performance than it. Above all, 124.m88ksim,
129.compress, 130.li and 134.perl are improved by the reduc-
tion of ‘read’ cycles. This reason is that the main core avoids
searching when loop entries for the iteration which will be
executed next by the main core are not stored.

Moreover, 101.tomcatv, 102.swim, 103.su2cor, 104.hydro2d
and 146.wave5 are improved by the reduction of ‘exec’ cycles.
This is because overhead filter allows computation reuse to be
applied to these loops more frequently by searching IAO-tables
only if loop entries for the iteration which will be executed
next by the main core are stored.

As mentioned above, we confirmed that the performance
degradation with the 8KBytes CAM is suppressed in (C8K)
although the latency is the same as 128KBytes CAM. If more

Fig. 5. Ratio of cycles (SPEC CPU95).

actual S-latency is used, the search overhead will decrease and
the performance will be improved. The result of the proposed
model with S-latency is shown as (C

′

8K) in Fig.5. As we can
see in the result, the proposed model (C

′

8K) has less ‘read’
cycles in many programs as expected, and not only ‘read’
but also ‘exec’ is considerably reduced. This is because that
the overhead filter allows computation reuse to be applied
to instruction regions more frequently, and the reuse hit rate
raises with (C

′

8K).
In conclusion, the performance of the proposed model (C8K)

is better than the previous model (M128K) as a whole. The
model (C8K) improves the maximum speed-up from 40.5%
to 40.6%, and the average from 9.6% to 10.6% although the
size of CAM is reduced to 1/16. In addition, the model (C

′

8K)
reduces the cycles by 58.4% in maximum and by 20.0% in
average. These results show that the proposed mechanisms
allow Auto-Memoization Processor to be implemented with a
smaller CAM without performance degradation.

C. Hardware Implementation Costs

We estimate the additional hardware costs for the proposed
model with the 8Kbytes CAM. When Auto-Memoization
Processor has three SpCs, n in Fig.3 should be 8 because
Auto-Memoization Processor assigns two iterations to each
core. Hence, the width of liid list is 8 × log28 = 24bit and
the width of liid is log28 = 3bit. Moreover, each of exec flag
and start flag is 1bit and search flag is 8bit. When the width
of each additional field is multiplied by the number of lines,
the additional hardware cost is about 1.2KBytes in total.

VII. CONCLUSIONS

In this paper, we proposed a new algorithm for purging
useless loop entries based on characteristics of loops. We also
proposed a new storing and searching filter against useless
entries for loops. The evaluation result with SPEC CPU95

benchmark suite shows that these mechanisms allow Reuse
Table to be implemented with a smaller CAM without any
performance degradation.

One of our future works is to investigate how an energy
consumption changes by implementing Auto-Memoization
Processor with a smaller CAM.

REFERENCES

[1] T. Tsumura, I. Suzuki, Y. Ikeuchi, H. Matsuo, H. Nakashima, and
Y. Nakashima, “Design and evaluation of an auto-memoization proces-
sor,” in Proc. Parallel and Distributed Computing and Networks, Feb.
2007, pp. 245–250.

[2] T. Ikegaya, T. Tsumura, H. Matsuo, and Y. Nakashima, “A Speed-up
Technique for an Auto-Memoization Processor by Collectively Reusing
Continuous Iterations,” in Proc. 1st Int’l. Conf. on Networking and
Computing (ICNC’10), Nov. 2010, pp. 63–70.

[3] M. H. Lipasti and J. P. Shen, “Exceeding the dataflow limit via
value prediction,” in Proc. 29th Annual ACM/IEEE Int’l Symp. on
Microarchitecture (MICRO-29), Dec. 1996, pp. 226–237.

[4] K. Wang and M. Franklin, “Highly accurate data value prediction using
hybrid predictors,” in Proc. 30th Annual ACM/IEEE Int’l Symp. on
Microarchitecture (MICRO-30), Dec. 1997, pp. 281–290.

[5] A. Roth and G. S. Sohi, “Register integration: A simple and efficient
implementation of squash reuse,” in Proc. 33rd Annual ACM/IEEE Int’l
Symp. on Microarchitecture (MICRO-33), Dec. 2000.

[6] Y. Wu, D. Chen, and J. Fang, “Better exploration of region-level value
locality with integrated computation reuse and value prediction,” in Proc.
28th Annual Int’l Symp. on Computer Architecture (ISCA-28), Jul. 2001,
pp. 98–108.

[7] C. Molina, A. González, and J. Tubella, “Trace-level speculative mul-
tithreaded architecture,” in Proc. 20th IEEE Int’l Conf. on Computer
Design: VLSI in Computers and Processors (ICCD’02), Sep. 2002.

[8] ——, “Compiler analysis for trace-level speculative multithreaded ar-
chitectures,” in Proc. 9th Annual Workshop on Interaction between
Compilers and Computer Architectures, Jun. 2005.

[9] P. Norvig, Paradigms of Artificial Intelligence Programming. Morgan
Kaufmann, 1992.

[10] SPARC64-III User’s Guide, HAL Computer Systems/Fujitsu, May 1998.
[11] MOSAID Technologies Inc., Feature Sheet: MOSAID Class-IC

DC18288, 1st ed., Feb. 2003.
[12] eSilicon Corporation, HiSilicon Licenses eSilicon’s 40nm Silicon-Proven

TCAMs for High-Performance Network Chips, Dec. 2011.

