
Hardware-Supported Pointer Detection
for common Garbage Collections

Kei IDEUE∗, Yuki SATOMI∗, Tomoaki TSUMURA∗ and Hiroshi MATSUO∗
∗Nagoya Institute of Technology
Gokiso, Showa, Nagoya, Japan

Email: camp@matlab.nitech.ac.jp

Abstract—Many mobile systems have to achieve both high
performance and low memory usage, and the total performance
of the wide range of platforms now can be affected by the
effectiveness of Garbage Collection (GC). GC algorithms have
been actively studied and improved, but they still have not
reached any fundamental solution. In this paper, we focus on
the point that the objects on the call stack should be traced in
many GC algorithms, and propose a hardware support technique
for speed up of this trace. To trace objects, it is needed to find
pointers on the call stack. Hence, we install tables for managing
all pointers on the call stack. By referring these tables, the
GC routine can detect pointers immediately. The result of the
simulation experiment shows the proposed method leads to low
GC latency.

Index Terms—garbage collection, hardware support, pointer
detection

I. INTRODUCTION

Many mobile systems have to achieve both high perfor-
mance and low memory usage, and the total performance
of the wide range of platforms now can be affected by the
effectiveness of Garbage Collection (GC). On the other hand,
it has been well known that GC has a big effect on the
performance of the systems such as server-side Java Runtime
Environment. In particular, GC can deteriorate the system
response time because GC has to halt all other processes for
running. To solve this problem, Concurrent GC[1] has been
proposed. Concurrent GC can run in parallel with application,
and reduces the maximum suspension time of the system while
GC is running. However, Concurrent GC is not suitable for the
system which is required a high throughput, because it has a
problem of decreasing the throughput by parallelizing GC and
application processes. Therefore, it has been needed to tune
the algorithm or parameters with considering the purpose of
use and features of each system, and this has been a burden
to users. In this paper, we focus on the point that many
GC algorithms commonly trace through the working set of
memory, and propose a hardware support technique for speed-
up of the trace. We aim to improve the performance of many
GC algorithms with a hardware support for the trace. With
the hardware support, the GC performance can be improved
by the cooperation between software and hardware without
tuning. Therefore, it is also expected that the hardware support
technique can take the burden of the tuning from the user.

Fig. 1. An example of the heap area and references.

II. GARBAGE COLLECTION

Garbage Collection (GC) is a routine for automatic memory
management. It automatically frees the unnecessary part of
the heap area where the data has been located dynamically
along the execution of a program. Fig. 1 shows a state of
the heap area and references between objects. A pointer to an
object located in the heap area is stored into the area which is
referable from applications directly. Specifically, such pointers
are stored into the global variable area, call stack, or registers.
These areas are called the set of roots. Among the objects
located in the heap area, the objects which are referable from
the set of roots, that is, which are referable from applications,
are called Live objects. On the other hand, the objects which
are not referable from the set of roots are called Dead objects,
and GC frees the unnecessary part of the heap area occupied
by these Dead objects.

Mark & Sweep[2] is one of the representative GC algo-
rithms. This algorithm consists of two phases. One is called
Mark phase, and the other is called Sweep phase. In Mark
phase, objects are traced by following the pointers with the set
of roots as the start points, and all Live objects are marked.
Then, it goes on to Sweep phase. The whole heap area is
scanned, and Dead objects which have not been marked at
Mark phase are collected. Mark & Sweep alternates these two
phases. Other representative GC algorithms are Copying[3]
and Reference Counting[4].

tsumura
テキストボックス
This paper is author's private version of the paper published as follows:Proc. 1st Int'l Symp. on Computing and Networking (CANDAR'13), pp.134-140Copyright (C) 2013 IEEE

Now, it is known that each of almost all GC algorithms
which are being studied now is a combination or an im-
provement of these three representative algorithms. Especially,
Mark & Sweep is widely used in combination with other
algorithms because this algorithm is comparatively easy to
be implemented. For example, Generational GC[5] is widely
used in such as Java Virtual Machines. In Generational GC,
the objects are divided into some generations, and the suitable
GC algorithm is applied to each generation. In particular,
Generational GC widely adopts a GC algorithm based on Mark
& Sweep or Copying for each generation. Like this, many GC
algorithms are based on Mark & Sweep or Copying. In this
paper, therefore, we focus on the point that Mark & Sweep
and Copying should trace objects to find Live objects. By
reducing the processing time for the trace, we aim to improve
the performance of many GC algorithms.

III. POINTER DETECTION IN THE CALL STACK

In this section, we will explain the common routine in Mark
& Sweep and Copying. These algorithms should find pointers
in the set of roots to trace objects. Then, we will also explain
an existing method for finding the pointers.

A. Tracing Pointers from the Set of Roots

Mark & Sweep and Copying which form the basis for many
GC algorithms have common routine for finding a pointer in
the set of roots and tracing the objects. The call stack is one
of the roots. Each stack frame on the call stack contains space
for the associated function. It includes the local variables, the
return address, the arguments, and so on. Each local variable
is either of reference type or primitive type, but the type is
generally not distinguishable on the call stack. Therefore, it
is needed to detect the pointers within each stack frame for
finding a source of trace. In the next section, we will explain
the technique for detecting the pointer adopted by Hotspot-
VM[6] which is one of the Java Virtual Machines.

B. Stackmap

Stackmap, which is adopted by HotspotVM, is an existing
technique for pointer detection. Each stack frame on the Java
call stack contains an array of local variables and an operand
stack. The operand stack is used for executing instructions by
HotspotVM, because it is a stack machine. Stackmap is a bit
string for indicating the locations of reference type variables in
local variables or the operand stack. A Java source program is
compiled into a bytecode. Then, Stackmap is generated by
keeping track of each type of values in local variables or
on the operand stack along the execution of the bytecode.
Java bytecode has an unique store instruction for each type of
value. Therefore, the type of a value in the local variable or
on the operand stack can be identified based on which store
instruction is used for the value.

For example, suppose that the program shown in Fig. 2 is
executed. In this program, values are stored into two local
variables: val and ref. This program is compiled into the
bytecode shown in Fig. 3. In this bytecode, both ‘istore 1’ at

1 class Sampleprogram{
2 public static
3 void main(String args[]){
4 int val = 1;
5 Object ref = new Object();
6 }
7 }　

Fig. 2. Sample Program

1 iconst 1
2 istore 1
3 new
4 dup
5 invokespecial
6 astore 2
7 return

Fig. 3. Bytecode

　

　

Fig. 4. Example of generating Stackmap.

the line 2 and ‘astore 2’ at the line 6 are the instructions for
storing values into local variables. However, they take different
types of values as their argument. Specifically, ‘istore 1’ is for
storing an integer value and ‘astore 2’ is for a reference. These
two instructions in Fig. 3 correspond to the assignments to val
and ref in Fig. 2 respectively. Hence, it is found that val has
an integer value and ref has a reference.

Fig. 4 shows how Stackmap is generated along the execution
of the bytecode shown in Fig. 3. In this figure, ‘type indicator’
means the type of each value. Specifically, v means the
primitive type and r means the reference type. In this program,
args, val and ref are local variables. As mentioned above, it
is found that val has an integer value and ref has a reference.
Similarly, it can be also determined that args has a reference
based on which store instruction is used for the value. Then,
each type of the value in the local variables is recorded,
and the bit string ‘101’, which indicates the locations of
references within the stack frame, is generated. By referring
this Stackmap, the GC routine can detect pointers in the call
stack.

Incidentally, an execution flow path may vary with a condi-
tional branch. Therefore, Stackmap has to be generated along
each execution flow path. However, if many Stackmaps are
generated and retained for handling all execution flow paths,
they might deteriorate the memory usage efficiency. Thus,
Stackmap needs to be generated every time GC runs, and this
will be a large overhead of GC.

Fig. 5. Structure of Ptr-Table.

IV. HARDWARE SUPPORT TECHNIQUE

In this section, we propose a hardware support technique
for reducing the overhead of pointer detection. In the proposed
method, we install tables for managing all pointers on the call
stack. We will explain the tables and the execution model of
the proposed method.

A. Pointer Management with Tables

In the proposed method, tables for managing all pointers
on the call stack are installed in the processor. In this paper,
we call these tables Ptr-Table. Now, pointers on the operand
stack will be updated frequently. Such frequent update may
increase the overhead caused by the access latency to Ptr-
Table. Therefore, for restraining the overhead, Ptr-Table is
composed of two tables: Primary Table and Secondary
Table. Primary Table manages only the pointers within the
current frame. On the other hand, Secondary Table manages
all pointers on the call stack except in the current frame. Since
Primary Table manages only the pointers within the current
frame, the size of Primary Table can be small and it can be
accessed fast.

The structure of these tables is shown in Fig. 5. Each entry
of these tables holds a pointer on the call stack and some
associated values. Primary Table contains three fields. One is
Address (Addr) which holds the address of the call stack where
the pointer is located. When an entry in Primary Table needs
to be updated, the entry can be specified by using this Addr
as a key. Another is Valid (V) which holds a flag representing
validity of the entry. The other is Pointer (Ptr) which holds
the pointer stored in the call stack. Now, we assume that
Primary Table is implemented with a RAM as same as L1
cache. In addition, two exclusive registers are installed which
hold the FrameID (FID) and ThreadID (TID) respectively for
identifying the current frame. Here, FID holds the address
indicated by the frame pointer of each frame, and TID holds
own thread identifier.

Secondary Table is roughly divided into two parts. One
is implemented with a ternary CAM (Content Addressable
Memory) which is capable of fast associative search. We call
this part CAM-Table. The other is implemented with a RAM

Fig. 6. Execution model of pointer registration.

which is capable of sequential access. We call this part RAM-
Table. These two parts of Secondary Table contain the same
number of entries and each entry corresponds to the other
table entry which has the same index. The fields Address
(Addr), FrameID (FID), and ThreadID (TID) are in CAM-
Table. These fields are used for identifying entries when the
tables are operated. When a pointer is updated or deleted,
the entry which corresponds to the pointer can be determined
immediately by associative search. On the other hand, the
fields Valid (V) and Pointer (Ptr) are in RAM-Table. The
values in these fields are necessary for the GC routine. Using
these values, the GC routine can determine the validity of
the pointers registered in the tables and trace only the valid
pointers. The GC routine should scan all entries in this table.
Therefore, these fields are in RAM-Table so that fast sequential
access will be available. When a certain entry needs to be
updated, CAM-Table is searched for the entry by using Addr,
FID, and TID as the keys. Then, the index of the entry is used
for accessing to RAM-table. This enables RAM-Table to be
accessed fast because each RAM-Table entry corresponds to
the CAM-Table entry which has the same index.

B. Execution Model with Ptr-Table

To use Ptr-Table as mentioned before in GC, the tables
should be operated along the execution of a program and
should always hold all necessary pointers for tracing objects.
In the following, we will explain the operation for Ptr-Table
and the execution model of GC with the tables.

1) Operation for Ptr-Table: Ptr-Table should hold all point-
ers which are stored into local variables or the operand stack
on the call stack. Therefore, when an instruction which stores
a pointer into a local variable or the top of the operand stack is
executed, the pointer should be registered into Primary Table.

Fig. 6 shows the execution model of pointer registration.
In this example, (a) ‘astore’ instruction stores the pointer
‘0xFF10’ into a local variable which is located at the address
‘0x120’ on the call stack. In the proposed method, when the
instruction for storing a pointer into the call stack, such as

Fig. 7. Processing flow when invoking a method.

‘astore’, is executed, (b) the pointer is also registered into
Primary Table. Before a pointer is registered, Primary Table
should be searched by using the address where the pointer is
located as a key to confirm whether the entry corresponding to
the address is already registered or not. This is for preventing
a situation where a pointer is managed by multiple entries. If
the content of the table is as shown in Fig. 6 (c), the entry
which corresponds to the local variable located at ‘0x120’
has not registered yet. Then, Primary Table is searched for
an entry which does not hold a valid pointer by scanning
Valid field, and the entry is used for the pointer. Next, (d)
the address of the local variable and the pointer are registered
into the fields of the entry. In the example shown in Fig. 6,
the address ‘0x120’ which indicates the location of the pointer
‘0xFF10’ on the call stack is registered into Addr field. Then,
the pointer ‘0xFF10’ is registered into Ptr field, and Valid
is set. Meanwhile, although this example shows only how to
register a pointer into Primary Table, some pointers in Primary
Table should be updated or deleted in some cases. When a new
pointer is stored into a local variable where another pointer has
been already stored, the associated entry should be updated.
In this case, Primary Table is searched for the entry by using
Addr as a key. Then, its Ptr field is updated. On the other
hand, when a NULL pointer is stored into an entry, the object
which is referred by the old Ptr in the entry is considered to
be deleted, and its Valid is unset.

For allowing Primary Table to manage only the pointers
within the current frame, some operations are required when
another frame becomes new current frame, for example, when
a new stack frame is built. In the proposed method, when
invoking a method or returning from a method, Primary Table
is managed for adapting to frame changes.

Fig. 7 shows how Ptr-Table is operated. When a method
is invoked, the contents of Primary Table should be saved
and correspond to the new current frame. Therefore, when
a method is invoked, (a) valid entries in Primary Table are
copied to Secondary Table. Then, (b) after the contents of
Primary Table is cleared, (c) new FID and TID are registered

Fig. 8. Processing flow when returning from a method.

so that Primary Table corresponds to the new current frame.

Next, Fig. 8 shows how Primary Table is operated when
returning from a method. When returning from a method, the
contents of Primary Table should be cleared and restored from
Secondary Table. Therefore, after all the contents of Primary
Table are cleared, Secondary table is searched for entries
corresponding to the new current frame by using FID and TID
as the keys. Then, (a) the entries found in Secondary Table are
restored to Primary Table. Meanwhile, (b) the entries which
are restored to Primary Table are deleted from Secondary
Table. If such entries remain in Secondary Table, they can
cause inconsistency between Primary Table and Secondary
Table, because updating or deleting a pointer in the current
frame affects only to Primary Table. Therefore, the pointers in
the current frame should be always managed only in Primary
Table.

When a thread exits and the call stack is destructed, all
pointers in the call stack should be deleted from Ptr-Table.
In such cases, both Primary Table and Secondary Table are
searched for the entries associated with the thread by using
TID corresponding to the thread as a key, and the Valid fields
of these entries are cleared. In this way, even an entry in
Secondary Table may become invalid, although only valid
entries are copied to Secondary Table when a method is
invoked. Therefore, Secondary Table also needs the Valid field.

Meanwhile, the number of entries in Ptr-Table is finite.
Therefore, if many pointers have to be stored, an entry
overflow may occur in Ptr-Table. In such cases, we assume
that VM turns off the hardware pointer detection and uses
Stackmap again. If VM starts to use Stackmap again, however,
Ptr-Table may lose some necessary pointers. Therefore, VM
cannot adopt the proposed method again. Hence, it is important
to determine the adequate size of Ptr-Table for preventing the
frequent entry overflow. In addition, we will also research a
more efficient technique for handling the entry overflow in the
future.

Fig. 9. Execution model of GC.

C. Execution Model of GC

The GC routine uses the pointers which have been registered
in Ptr-Table as the root for tracing objects. This means that
Ptr-Table is added to the set of roots. Then, when the GC
routine traces objects, it refers Ptr-Table as one of the source
for tracing pointer instead of the call stack. All pointers
on the call stack are stored in Primary Table or Secondary
Table. Therefore, it is possible to trace all the Live objects by
referring to these tables. By referring these tables, the overhead
for pointer detection in the call stack can be reduced.

Fig. 9 shows an execution model of GC with Ptr-Table. This
example shows a situation where three pointers are stored in
the call stack, and one of them is in the current frame. In
addition, a thread whose TID is ‘0x02’ is assumed to have
exited and Secondary Table has some invalid entries. First, (a)
Primary Table is searched for the entries whose Valid fields are
set. In the case of the example shown in Fig. 9, only the entry
which has the pointer located in ‘0x104’ is found. Therefore,
(b) the object which is referred by the pointer in the entry is
marked. Similarly, (c) Secondary Table is also searched for the
entries which hold valid pointers. Then, (d) the object which is
referred by the pointer in each of the entries is marked. In this
way, pointers in each frame on the call stack can be detected
only by accessing to Ptr-Table. This can reduce the overhead
for pointer detection and improve the performance of GC.

V. PERFORMANCE EVALUATION

We have evaluated the performance of the proposed method
with a simulator. In this section, we discuss the effectiveness
of the proposed method.

A. Simulation Environment

In this evaluation, we used gem5 simulator system[7]. The
evaluation environment is shown in TABLE I. As the target
architecture, we selected ARM which is widely used for
embedded systems. ARMv7 is a 32-bit RISC microprocessor,
and ARM-RealView PBX is a baseboard which is a highly
integrated software and hardware development system based

TABLE I
EVALUATION ENVIRONMENT

Machine ARM-RealView PBX
Processor ARMv7
Frequency 2.0 GHz
Memory 128MB

OS Linux 2.6.38.8-gem5

on ARMv7 architecture. In this environment, We evaluated the
performance of HotspotVM 1.6.0. In addition, we prepared
benchmark programs which tax the heap memory by invoking
a method repeatedly for generating objects.

Meanwhile, we assume that the ISA is extended and
HotspotVM can update and read Ptr-Table with some dedi-
cated instructions. We will implement the GC library for using
the extended ISA easily in the future.

B. Evaluation Results

The proposed method uses Ptr-Table instead of Stackmap.
Therefore, the overhead for generating Stackmap can be re-
duced. In HotspotVM, Stackmap is generated in the function
compute map(). Hence, to confirm the effectiveness of the
proposed method, we evaluated the execution cycles of whole
GC routine and compute map() while the benchmark program
is running.

Now, as mentioned in section III-B, Stackmap needs to
be generated every time GC runs because the execution flow
paths may vary. To reduce this overhead, HotspotVM caches
some generated Stackmaps and reuses them. Therefore, it
is expected that the effectiveness of the proposed method
varies depending on the reusability of the Stackmap cache. To
examine the effect caused by the cache reusability, we prepare
four benchmark programs and compare the execution cycles
of each program with other programs. Currently, the proposed
model cannot execute complex programs such as real applica-
tions. Therefore, each benchmark program consists of a simple
recursive function func() and some conditional branches. If
the depth of the recursion and the number of conditional
branches increase, more Stackmaps should be generated and
the reusability of Stackmap cache will be deteriorated. The
program (a) has no conditional branch. On the other hand, the
program (b), (c), and (d) has some conditional branches. Each
program invokes func() 10 times in main() function. Being
invoked by main(), func() calls itself recursively. Program (a)
and (b) repeat the recursive call 10 times. Now, program (b)
has the conditional branch in func() so that it has 10 execution
flow paths. Furthermore, we also evaluated program (c) and
(d) for reference which are expected that the proposed method
works more effectively. Program (c) repeats the recursive call
15 times and has 15 execution flow paths. On the other
hand, program (d) repeats the recursive call 20 times and
has 20 execution flow paths. Incidentally, the effectiveness of
the proposed model depends on not only the reusability of
the Stackmap cache but also the size of objects which are
generated in the benchmark programs. This is because, the
size of objects affects how many times GC should run. In this

Fig. 10. Ratio of execution cycles.

Fig. 11. Total cycles of each program.

evaluation, therefore, we adjusted the ratio of GC in the total
execution cycles to about 20% in each program by adjusting
the size of objects.

We have evaluated the previous model and the proposed
model. Fig. 10 shows the total execution cycles of GC and
the ratio of the compute map() of each program. Each bar is
normalized to the execution cycles of the previous model.

Note that as the number of the recursive call and the
execution flow paths increases, the ratio of compute map()
in GC also increases and the total cycles of GC is much
reduced. This is because, the reusability of the Stackmap
cache is deteriorated along the change of execution flow paths
by conditional branches. As a result, while the execution
cycles of (a) is reduced by only 0.31%, each execution
cycles of (b), (c) and (d) are reduced by 17.8%, 41.7% and
68.5% respectively. The result shows that the previous model
which caches Stackmap cannot reduce the execution cycles
of compute map() when the execution flow paths change
frequently. On the other hand, the proposed model can reduce
the execution cycles of compute map() regardless of control
divergence. This means that the proposed model can have the
good effect as well or better than the Stackmap cache for
various programs. Therefore, the memory area for holding the
Stackmap cache is no longer necessary, and the memory usage
efficiency can increase.

Next, we evaluated the total cycles of each program. The
result is shown in Fig. 11. Each bar is normalized to the
execution cycles of the previous model. Here, gettid is a
function for retrieving the thread identifier in the proposed
model. The result shows that the total cycles of program (a)

TABLE II
THE CYCLE REDUCTION RATE INCLUDING THE OVERHEAD(%)

(a) (b) (c) (d)
Proposed model -1.22 2.75 7.28 14.83

Overhead 0.96 0.97 0.99 0.99
Total -2.18 1.78 6.29 13.84

TABLE III
BREAKDOWN OF THE OVERHEAD(%)

Overheads (a) (b) (c) (d)
Registration 20.14 19.97 21.12 22.32

Copy(invoke) 70.76 71.19 70.74 69.95
Copy(return) 6.18 6.22 6.37 6.45

Reference 2.93 2.62 1.78 1.58
Total 100 100 100 100

and (b) have no considerable difference between the previous
model and the proposed model. One of the reasons for this
is the small ratio of execution cycles of compute map() to
total cycles in these programs. In addition, currently, the
proposed model uses gettid function as mentioned above and
execute some instructions to operate Ptr-Table. Thus, the total
execution cycles of the function and the instructions appear to
be the overhead of the proposed model.

However, in the case of program (b), the execution cycles of
GC is reduced by 17.8%, and this can lead to low maximum
suspension time. Moreover, the total execution cycles of pro-
gram (c) and (d) are reduced by 7.28% and 14.8% respectively.
This means that the effectiveness of the proposed model
depends on the characteristics of each program. However,
we can evaluate only simple programs at present. Therefore,
to confirm the performance of the proposed model in the
environment which is similar to real applications, we will
increase the number of executable programs and evaluate them
in the future.

In the proposed model, the access latency for Ptr-Table
should be considered while the execution cycles of GC is
reduced. In this evaluation, we assume that the RAM used
for Ptr-Table is similar to the RAM used for L1 cache.
Thus, the access latency for the RAM is assumed to be two
cycles which are equal to the L1 cache access latency in the
simulator. In addition, the CAM used for Ptr-Table is modeled
on DC18288[8] and its frequency is assumed to be 200MHz.
The associative search in the CAM can return the result in
one cycle. However, the clock frequency of the processor
is 2GHz which is 10-times faster than the CAM. Thus, the
access latency for the CAM is assumed to be 10 cycles by
taking the ratio of these frequencies into account. Therefore,
the total latencies for accessing one entry in Secondary Table
is assumed to be 12 cycles which are consist of 10 cycles for
accessing the CAM to determine the entry, and 2 cycles for
accessing the RAM.

We approximate the overhead of the proposed model by
multiplying the access count by the access latency. TABLE II
shows the reduction rate of proposed model, the ratio of
the overhead, and the total reduction rate in each program.

Fig. 12. Ratio of the overhead to GC.

The overhead is mainly divided into registration overhead,
copy overhead, and reference overhead. TABLE III shows the
breakdown of each overhead. ‘Registration’ is the overhead
for registering a pointer into Primary Table. ‘Copy(invoke)’ is
the overhead for copying valid entries from Primary Table to
Secondary Table in invoking a method. ‘Copy(return)’ is the
overhead for copying valid entries from Secondary Table to
Primary Table in returning from a method. ‘Reference’ is the
overhead for referring Ptr-Table in GC. As shown in TABLE II
and TABLE III, we confirmed that the overhead is sufficiently
small in each program.

In the proposed model, the execution cycles of GC in
program (a), (b), (c), and (d) respectively account for 21.6%,
17.8%, 13.4%, and 8.7% of the total execution cycles. Now,
the ratio of the overhead to GC in the proposed model is
shown in Fig. 12. The ratio of the overhead in each program
is respectively about 4.37%, 5.58%, 8.00%, and 13.3%. As
a result, it is found that the more execution cycles of GC
are reduced, the larger the ratio of the overhead is. However,
we confirmed that the overhead is sufficiently small compared
with the reduced cycles.

Meanwhile, the current proposed model cannot be applied
to some routines, such as Java Classloader which loads Java
classes before main() function is called. Therefore, the pro-
posed model still uses Stackmap only for finding pointers
which are stored onto call stack in such the routine. Thus,
if all pointers on the call stack can be managed properly with
Ptr-Table, the execution cycles of compute map() function will
be completely eliminated.

Incidentally, reducing processing time for adjusting a
pointer can be also considered as another technique for im-
proving GC. This pointer adjustment is required when an
object is copied to other area. HotspotVM adopts Genera-
tional GC and uses Mark Compact algorithm which is an
improvement of Mark & Sweep. In this algorithm, all Live
objects are relocated in the top of the heap area for compaction
after Mark phase. We evaluated the execution cycles of each
program for adjusting the pointer in this compaction, and it
is found that the routine can account for about 20% of GC.
Therefore, it is expected that the routine can be processed
fast by calculating and managing the adjusted pointer with
some dedicated mechanism. We will also consider another

technique for improvement of GC, including such fast pointer
adjustment, from various aspects in the future.

VI. CONCLUSION

In this paper, we focused on a common GC routine for
tracing pointers from the set of roots, in order to improve
the performance of many GC algorithms. Then, we proposed
a hardware support technique for speed-up of the trace. The
call stack, which is one of the roots, contains not only pointers
but also non-pointers such as integer values. Therefore, the
GC routine should detect the pointers within the call stack.
Hence, we installed tables, which manage all pointers on the
call stack, in the processor. By using the tables, the GC routine
can detect pointers on the call stack immediately. Finally, we
evaluated the execution cycles of the proposed model and the
overhead for managing the tables by using a simulator. As a
result, it is found that the proposed model brings the low GC
latency.

One of our future works is to reduce the hardware imple-
mentation cost and the access overhead for the tables. For
example, the overhead for referring the tables by the GC
routine can be reduced by efficiently partitioning the tables.
Meanwhile, the proposed method may not be effective in
some situation. For example, if the ratio of GC in the total
execution cycles is small, the overhead for storing pointers
will become larger than the reduced cycles in GC. Therefore,
we should develop a dynamic switching method which can
determine whether VM should adopt the proposed method or
not. In addition, because some hardware units are installed
in the proposed model, the energy consumption will increase.
Therefore, after evaluating the energy consumption in detail,
we will also examine a technique for suppressing it. Especially
in mobile systems, the energy consumption is very important,
and this will be a prior issue for our project.

ACKNOWLEDGMENT

This research was partially supported by JSPS KAKENHI
Grant Number 25540019 and Inamori Foundation Research
Grant.

REFERENCES

[1] Y. Ossia et al., “A Parallel, Incremental and Concurrent GC for Servers,”
in Proc. ACM SIGPLAN Conf. on Programming Language Design and
Implementation (PLDI’02), May. 2002, pp. 129–140.

[2] J. McCarthy, “Recursive Functions of Symbolic Expressions and Their
Computation by Machine, Part I,” Communications of the ACM, vol. 3,
pp. 184–195, Apr. 1960.

[3] M. Minsky, “A LISP Garbage Collector Algorithm Using Serial Sec-
ondary Storage,” Massachusetts Institute of Technology, Tech. Rep., 1963.

[4] G. E. Collins, “A Method for Overlapping and Erasure of Lists,”
Communications of the ACM, vol. 3, pp. 655–657, Dec. 1960.

[5] M. Hirzel, “Data Layouts for Object-Oriented Programs,” in Proc. ACM
SIGMETRICS Int’l Conf. on Measurement and Modeling of Computer
Systems (SIGMETRICS’07), 2007, pp. 265–276.

[6] L. Bak, J. Duimovich, J. Fang, S. Meyer, and D. Ungar, “The New
Crop of Java Virtual Machines,” in Proc. 13th ACM SIGPLAN Conf.
on Object-oriented Programming, Systems, Languages, and Applications
(OOPSLA’98), 1998, pp. 179–182.

[7] N. Binkert et al., “The gem5 Simulator,” ACM SIGARCH Computer
Architecture News, vol. 39, pp. 1–7, May. 2011.

[8] MOSAID Technologies Inc., Feature Sheet: MOSAID Class-IC DC18288,
1st ed., Feb. 2003.

