
An Efficient Thread Recombining
at Program Phase Changes

Kosuke SOBUE∗, Tomoaki TSUMURA∗ and Hiroshi MATSUO∗

∗Nagoya Institute of Technology
Gokiso, Showa, Nagoya, Japan

Email: camp@matlab.nitech.ac.jp

Abstract—Chip-multiprocessors now have become in wide
use. For efficiently using the resources in chip-multiprocessors,
programmers need to consider processor specifications and load
balancing, but it is difficult for them. To address this problem,
Thread Tailor has been proposed. Thread Tailor determines
the number of threads based on processor specifications before
execution, balances their loads based on the results of profiling
and combines threads. However, Thread Tailor determines which
threads should be combined based on only the number of
executed cycles of each thread. Hence, the programs, whose
threads change their computation loads according to program
phases, may slow down with Thread Tailor. To solve this problem,
we propose a method which dynamically recombines threads
according to program phases for balancing the loads. The
results of the experiment with SPLASH-2 benchmark suite and
PARSEC benchmark suite show that the new method improves
the execution time 6.0% in maximum.

Index Terms—thread scheduling, multi-threading, multi-core
processors

I. INTRODUCTION

As electric power consumption and calorific power are in-
creasing, and semiconductor devices keep downscaling, it be-
comes difficult to raise clock frequencies of microprocessors.
In response to this distress, multi-core processors now attract
a great deal of attention. A multi-core processor has several
independent cores on a chip. On multi-core processors, mul-
tiple threads run in parallel for speed-up. For efficiently using
the resources of multi-core processors, developers must write
parallel programs and specify the number of threads. However,
it is difficult for developers to determine the adequate number
of threads with taking the resources into account.

To solve this problem, Thread Tailor[1] has been proposed.
Thread Tailor adjusts the number of threads by combining
threads to optimize system efficiency. The information such
as the processor architecture and program characteristics are
gathered and used for the thread combining. To combine
threads, Thread Tailor first constructs an undirected graph.
Each node of the graph represents the characteristics, such
as the number of executed cycles, of an thread. Each edge
represents communication patterns between the threads. To
construct the graph, Thread Tailor uses offline analysis. Thread
Tailor determines which threads should be combined by ap-
plying a graph partitioning algorithm to the graph. Therefore,
by using Thread Tailor, programmers can utilize the resources

in multi-core processors even if the execution time of some
thread is much different from others. However, Thread Tailor
combines threads only once at the beginning of a program.

In this paper, we propose an efficient thread combining,
which recombines threads according to program phases at
runtime. Thus, thread combining of the new model is more
adaptive than that of the traditional model.

II. RESEARCH BACKGROUND

In this section, we describe about related works. In addition,
we describe about Thread Tailor and how it works.

A. Related Works

Many works for adjusting the number of threads considering
the environment have been proposed in OS and hardware
fields. However, for determining how many threads an appli-
cation should use, the OS or the hardware may not be able to
use enough information. To address this problem, Jung et al.[2]
and Suleman et al.[3] have proposed monitoring the execution
and predicting the appropriate number of threads.

Jung’s work relies on OpenMP library to automatically
adjust the thread decomposition in SMT. Suleman’s work
implements Synchronization-Aware Threading which predicts
the optimal number of threads depending on the amount of
data-synchronization, and Bandwidth-Aware Threading which
predicts the minimum number of threads required to saturate
the off-chip bus. However, these works are only effective on
data-parallel loops. In addition, Jung’s work can be used only
with OpenMP.

B. Thread Tailor

1) Outline of Thread Tailor: When programmers write par-
allel programs, it is difficult to determine the adequate number
of threads depending on the processor specifications, and to
balance the loads. To address these problems, Thread Tailor
determines the number of threads based on the processor spec-
ifications before execution, and balances the loads of the cores
by combining threads based on the result of profiling. Fig. 1
shows the processing flow of Thread Tailor. The processing
flow of Thread Tailor consists of two stages. They are the
static stage before runtime and the dynamic stage at runtime.
In the static stage, first, Thread Tailor acquires processor

tsumura
テキストボックス
This paper is author's private version of the paper published as follows:
Proc. 3rd Int'l Conf. on Networking and Computing (ICNC'12), pp.316-320
Copyright (C) 2012 IEEE
DOI: 10.1109/ICNC.2012.59



Fig. 1. The Processing Flow of Thread Tailor

specifications such as the number of cores, the shared cache
capacity, and so on. Next, Thread Tailor acquires information
of each thread, such as the number of executed cycles, the
memory bandwidth, and so on. Using the information gathered
through the profiling, Thread Tailor constructs an undirected
graph which is called a Communication Graph. Each node
of the graph represents the number of executed cycles, the
memory bandwidth, and the working set of a thread. Each
edge represents communication patterns between the threads.
Lastly, partitioning the Communication Graph, Thread Tailor
determines which threads should be combined, or merged into
one thread. When threads are created in a program, Thread
Tailor applies a graph partitioning algorithm to the Commu-
nication Graph, and determines the thread combination.

2) Static Stage of Thread Tailor: Thread Tailor acquires
processor specifications such as the number of cores, L2
shared cache capacity (CacheCapacity) and memory band-
width (MemBW ). Thread Tailor acquires the number of cores
and CacheCapacity from /proc/cpuinfo in Linux. MemBW
is acquired with STREAM benchmark[4].

Estimating processor specifications, Thread Tailor con-
structs a Communication Graph. Therefore, ahead of running
program in the dynamic stage, Thread Tailor gathers the
information of each thread. The information of the i-th thread
is the cycles of computation without the barrier synchro-
nization cycle (Cyclei), the amount of the off-chip memory
bandwidth (BWi), and the working set size (Workseti). The
communication cost between i-th and j-th thread (Commi,j)
is also gathered. Cyclei and BWi are estimated by using
Hardware Performance Counter (HPC) attached to each CPU
core. However, Workseti and Commi,j cannot be estimated
by using HPC. Hence, Thread Tailor must approximate them
by using another method. To estimate Workseti, Thread
Tailor examines cache line access information, which includes
the accessed cache line and the number of accesses to the
cache lines by each thread. All cache line accesses are sorted
based on the number of accesses from every threads. Thread
Tailor then determines how many unique cache lines are
needed to comprise 90% of total accesses, and considers it
as Workseti.

Then, Thread Tailor estimates Commi,j by using the cache
line access information. In case of that all threads are executed

Fig. 2. Cache Line Access Information

in different cores, Thread Tailor finds approximate values
of these costs. For example, if a program is executed with
two threads Thr1 and Thr2, the cache line access infor-
mation can be illustrated as Fig. 2. In this case, the cache
lines which both threads access in common are 0x1000
and 0x4000. When each thread accesses these lines, some
communication overhead occurs. As shown in Fig. 2, Thr1
accesses the cache line 0x1000 by five load instructions
and 10 store instructions. Thr2 accesses the same line by
nine store instructions only. In this case, Thread Tailor esti-
mates the number of communications between Thr1 and Thr2
as min(5, 9) + min(10, 0) + min(10, 9) = 14. Likewise,
Thread Tailor estimates the number of communications on the
cache line 0x4000 as 16. Consequently, the total number of
communications between Thr1 and Thr2 is regarded as 30.
To estimate how many cycles does it take to communicate
between threads, Thread Tailor assumes a non-uniform cache
architecture with the 2D-mesh network and a directory-based
coherence protocol. If threads are assumed to be randomly
assigned to the cores, the average communication latency
will be 3 ×

√
Cores × L, where L is the access latency

to the lowest-level shared cache and
√

Cores is the average
distance between two cores in a grid. Using the information
gathered through the profiling, Thread Tailor constructs a
Communication Graph which is composed of nodes which
represent Cyclei, BWi, Workseti and edges which represent
Commi,j .

Thread Tailor determines which threads should be combined
by analyzing the Communication Graph. For this purpose,
Thread Tailor uses Kernighan-Lin (KL) algorithm[5], which
is one of the graph partitioning algorithm. KL divides nodes
in Communication Graph into two groups, exchanges nodes
between the groups, and minimizes the number of edges
across the groups. Each of the group represents a set of com-
bined threads. KL estimates parameters of the k-th group as
CycleGroupk

=
∑

i∈Groupk
Cyclei −

∑
i,j∈Groupk

Commi,j ,
BWGroupk

=
∑

i∈Groupk
BWi, and WorksetGroupk

=∑
i∈Groupk

Workseti. In Thread Tailor, KL finds the best
combination of nodes, with which the largest number of
execution cycles of the thread groups will be reduced, by ex-
changing nodes between groups with greedy search, while both
CacheCapacity/N > WorksetGroupk

and MemBW >
BWGroupk

are fulfilled, where N is the number of groups.
KL is applied repeatedly until the largest number of executed
cycles in each group does not be improved any more.



Fig. 3. The Combining Flow of Dynamic Stage

3) Dynamic Stage of Thread Tailor: Using the information
acquired in the static stage, Thread Tailor combines threads in
the dynamic stage. When vm_pthread_create function
in Thread Tailor is called in a program, Thread Tailor creates
both a kernel thread and a user thread, or only a user thread
using the information. Fig. 3 shows the combining flow of
dynamic stage. First, when the main thread creates a user
thread UsrThr1, the main thread identifies the group, which
UsrThr1 belongs to, by using KL. Now, the kernel thread
corresponding to the group, which UsrThr1 belongs to, is not
created yet. Hence, the main thread calls pthread_create
function to create a kernel thread for UsrThr1. Next, when
the main thread creates UsrThr2, the main thread identifies
the group which UsrThr2 belongs to. If UsrThr2 belongs to
the same group with UsrThr1, only the UsrThr2 is created.
Therefore, by creating user threads within the kernel thread,
Thread Tailor achieves thread combining. However, to execute
a program with user threads and kernel threads, Thread Tailor
needs to switch user thread contexts and have user thread
barrier synchronization function. Thread Tailor manages the
context information of user threads and switches a user thread
to another user thread in the same group. When Thread Tailor
detects that all user threads arrive at a barrier function, the
user threads terminate the barrier synchronization.

III. RECOMBINING THREADS AT PHASE CHANGES

In this section, we propose a new model which will improve
the total performance of Thread Tailor by recombining threads.

A. Dynamic Recombining according to Program Phases

When vm_pthread_create function is called, user
threads are combined by Thread Tailor. However, Thread
Tailor cannot change the combination of user threads through
the program execution. Therefore, if the loads of the user
threads fluctuate as the program phases change, the perfor-
mance will decline because Thread Tailor cannot keep track

TABLE I
EXECUTION CYCLES IN PROGRAM PHASE IN BARNES

Thr0 ... Thr3 ... Thr15
... ... ... ... ... ...
Phase A 2,336,700 ... 1,699,472 ... 2,355,357
Phase B 296,850 ... 176,227 ... 288,654
... ... ... ... ... ...
Sum 342,073,821 ... 529,612,583 ... 449,629,402

of it. In this paper, we propose a new model of Thread Tailor
which recombines user threads at each barrier, considering
that the program phases will change at the barriers. The new
model recombines user threads at each barrier to minimize
the number of executed cycles of the last kernel thread, which
arrives at the barrier, in each thread group.

To estimate the effectiveness of the new recombining model,
we have observed the number of executed cycles between bar-
rier synchronizations in a program. TABLE I shows the execu-
tion cycles of barnes from SPLASH-2 benchmark suite[6] with
16 threads on a 4-core processor. Phase in TABLE I represents
the number of executed cycles of each thread between a barrier
and the next barrier, and Sum represents the total cycle of all
phases. Each of the numbers with underline represents the
cycles of the last thread in the phase. TABLE I shows that
the threads with the most largest number of executed cycles
in PhaseA, PhaseB and Sum are different. This means that
the load of each thread increases or decreases every phase.
However, the traditional model combines threads only once at
the beginning considering only Sum. On the other hand, the
recombining model adequately combines threads every barrier
synchronization considering the information of each Phase.
Hence, user thread combining of our model is more fine-
grained than that of the traditional model, and some speed-up
is expected.

B. Additional Parameter for Partitioning Algorithm

As mentioned before, the new recombining model can
change the combination of user threads every phase. Hence,
the user thread migration, which the traditional model need
not assume, will occur. Therefore, it should be prevented
that the overhead for the user thread migration has a bad
influence on the user thread combining. Hence, we install
the number of L1 cache misses as the new parameter which
reflects the cost of user thread migration. Now, assume that
when a processor executes a parallel program, a user thread
UsrThr1 accesses the same cache line before and after a barrier
synchronization. If UsrThr1 is migrated to another core at the
barrier synchronization, UsrThr1 will cause L1 cache misses
afterward. Therefore, the new recombining model estimates
this L1 cache miss penalty in the static stage and uses this
penalty as additional parameter for KL.

In addition, there is a problem that BWGroupk
used by

KL is estimated incorrectly larger in the traditional model.
Therefore, we also improve the evaluation formula of KL.



IV. IMPLEMENTATION

A. Improvement of Profiling and Partitioning Algorithm
In the new recombining model, the method for profiling in

the static stage needs to be changed to get information of each
phase. In addition, KL should be improved for considering
the migration costs of the user threads and improving the
constraint on the memory bandwidth.

In the implementation of the recombining model, Cyclei,
BWi, Workseti of each thread, Commi,j , and the number
of L1 cache misses (MigrationCacheMissi) caused by user
thread migrations should be estimated every phase. Through a
program phase, Cyclei, BWi, Workseti of each thread and
Commi,j can be acquired as same as the traditional model. To
estimate MigrationCacheMissi, the recombining cost, the
cache line access information of each thread can be used. In
this paper, the number of the cache lines, which are accessed in
common before and after a barrier synchronization, is regarded
as MigrationCacheMissi. Ahead of dynamic stage, these
parameters are acquired every phase.

To consider MigrationCacheMissi and to improve the
constraint on memory bandwidth, we improve KL. In the
improved KL, when the number of executed cycles of each
group is estimated, L1 cache misses which are involved
by user thread migration are considered. If KL determines
that a thread is migrated, KL adds L2AccessLatency ×
MigrationCacheMissi to Cyclei.

In the traditional model, the constraint on memory band-
width, MemBW >

∑
i∈Groupk

BWi, is used by KL. How-
ever, to execute a program with switching user threads in each
group, the user threads in the same group are not simultane-
ously executed. Therefore, the constraint on memory band-
width in the traditional model is too hard. Hence, we change
the constraint on the memory bandwidth as MemBW >
maxi∈Groupk

BWi.

B. Execution Model
In the new recombining model, when all user threads arrive

at a barrier, the threads are recombined. Now, the recombining
model prepares a user thread called temporary user thread per
kernel thread, and uses it at each barrier synchronization. The
reason why the temporary user threads are prepared is that the
user threads may be migrated at each barrier synchronization.
In the traditional model, each kernel thread always has only
one active user thread, because the combination of user threads
never change. However, in the recombining model, a kernel
thread may have no active user thread right after a barrier
synchronization, because the active user thread of the kernel
thread can be recombined to another thread group. Similarly, a
kernel thread may have multiple active user threads. Therefore,
in the recombining model, the thread activeness should be
delegated to other thread after recombining. However, if the
activenesses are delegated directly between user threads, an
active user thread may delegate its activeness to another active
user thread. In this situation, execution will be stopped by
segfault. Therefore, to prevent this situation, the recombining
model uses temporary user threads.

Fig. 4. An Example at a Barrier Synchronization

TABLE II
EVALUATION ENVIRONMENT

OS Fedora 15
CPU Intel Core2 Quad
Frequency 2.83 GHz
Shared L2 Cache 6 MB×2
Memory 3 GB
Compiler llvm-gcc 4.2.1
Compile options -O3

An example at a barrier synchronization is shown in Fig. 4.
In Fig. 4, UsrThrA and UsrThrB are the temporary user
threads. In the recombining model, (a) when the last user
threads UsrThr2 and UsrThr3 arrive at a barrier, (b) their
activenesses are delegated from UsrThr2 to UsrThrA and from
UsrThr3 to UsrThrB. Next, (c) Thread Tailor recombines the
user threads. In this example, Thread Tailor exchanges Us-
rThr1 and UsrThr3. After recombining, (d) UsrThrA delegates
back its activeness to UsrThr3 and UsrThrB delegates back to
UsrThr4.

However, in this model, there is a problem that some pro-
cessor resources must be assigned to temporary user threads.
Nevertheless, the number of these user threads is equivalent
to the number of kernel threads at the most. Therefore, there
will be little impact on the execution time.

V. PERFORMANCE EVALUATION

A. Evaluation Environment

We will discuss the performance of the new recombining
model proposed in this paper. The evaluation environment
is shown in TABLE II. We assume that no other program
runs on the processor, and the CPU and cache resources
can be occupied by the benchmark program. The parameters,
L2AccessLatency and the L2 cache line size, cannot be
estimated at the system level. Hence, we assume the latency



TABLE III
BENCHMARK PROGRAMS AND THEIR INPUT PARAMETERS

SPLASH-2
barnes 32768 BODIES
water-nsquared 4096 MOL, 6 STEP

PARSEC
fluidanimate simlarge
blackscholes simlarge
swaptions simlarge

Fig. 5. Ratio of Execution Time

as 50 cycles and the line size as 64bytes. The number of user
threads in the static and the dynamic stage is defined as 16.

We have evaluated the execution time of some workloads
from SPLASH-2 benchmark suite and PARSEC benchmark
suite[7]. These benchmarks are also used for the evaluation
of Thread Tailor in [1]. The workloads are executed with the
input parameters shown in TABLE III. All workload programs
are compiled by llvm-gcc[8] 4.2.1 with -O3 option. We have
evaluated following three models,

(N) Normal Execution (baseline)
(T) Thread Tailor
(R) Recombining Model proposed in this paper

and we tried 20 times on each workloads. All models are
evaluated with four kernel threads.

B. Results with SPLASH-2 & PARSEC

The evaluation results are shown in Fig. 5. It shows the
execution time of three models and each bar is normalized to
the execution time of (N).

The results show that the recombining model achieved more
speed-up than traditional model in barnes and water-nsquared,
and mitigated the performance deterioration in fluidanimate.
The reason why the execution time of these three programs
is improved, compared to the traditional model, is that these
programs include barrier synchronizations. There are 18 bar-
rier synchronizations in barnes, 38 barrier synchronizations

in water-nsquared, and 41 barrier synchronizations in fluidan-
imate. Hence, the grain of thread combining become finer
than the grain with traditional Thread Tailor. Moreover, flu-
idanimate is a program which uses much memory bandwidth.
Hence, due to the hard constraint on memory bandwidth in
KL, the traditional model cannot balance loads between the
combined threads. By relaxing this constraint, fluidanimate
with the recombining model is 6.0% faster than that with the
traditional model. On the other hand, the execution time of
blackscholes and swaptions with the recombining model is
as fast as that with the traditional model. The reason is that
these programs do not include any barrier synchronization. In
conclusion, the performance of the recombining model (R) is
better than the traditional model (T) as a whole. The model
(R) improves the execution time 2.1% in average, and 6.0% in
maximum. In addition, the model (R) improves the execution
time of the programs,which include barriers, 3.6% in average.

VI. CONCLUSION

In this paper, we have proposed a new recombining model
of Thread Tailor, which can balance the loads according
to the program phases. In addition, we have improved the
constraint on memory bandwidth in the graph partitioning al-
gorithm. Through an evaluation with SPLASH-2 and PARSEC
benchmark suites, it is found that the new model improves
the execution time 2.1% in average, and 6.0% in maximum,
compared to the traditional model.

One of our future works is to improve the execution time
of a program without barrier synchronizations. In this paper,
we have considered that the program phases will change
at the barriers. However, not only barrier synchronizations
will cause the change of phases. In addition, we need to
prevent programs, such as fluidanimate, from performance
deterioration with the recombining model, compared to the
performance of normal execution.

REFERENCES

[1] J. Lee et al., “Thread Tailor: Dynamically Weaving Threads Together
for Efficient, Adaptive Parallel Applications,” in Proc. 37th Annual Int’l
Symp. on Computer Architecture, 2010, pp. 270–279.

[2] C. Jung et al., “Adaptive Execution Techniques for SMT Multiprocessor
Architectures,” in Proc. 10th ACM SIGPLAN Symp. on Principles and
Practice of Parallel Programming, 2005, pp. 236–246.

[3] M. A. Suleman et al., “Feedback Driven Threading: Power-Efficient and
High-Performance Execution of Multithreaded Workloads on CMPs,”
in Proc 13th Int’l Conf. on Architectural Support for Programming
languages and Operating Systems (ASPLOS), 2008, pp. 277–286.

[4] J. D. McCalpin, “Memory Bandwidth and Machine Balance in Current
High Performance Computers,” IEEE Computer Society Technical Com-
mittee on Computer Architecture (TCCA) Newsletter, pp. 19–25, Dec.
1995.

[5] B. W. Kernighan et al., “An Efficient Heuristic Procedure for Partitioning
Graph,” Bell System Technical Journal, pp. 291–307, 1970.

[6] S. C. Woo et al., “The SPLASH-2 Programs: Characterization and
Methodological Considerations,” in Proc. 22nd Annual Int’l Symp. on
Computer Architecture (ISCA’95), 1995, pp. 24–36.

[7] C. Bienia et al., “The PARSEC Benchmark Suite: Characterization
and Architectural Implications,” in Proc. 17th Int’l Conf. on Parallel
Architectures and Compilation Techniques, Oct. 2008, pp. 72–81.

[8] C. Lattner et al., “LLVM: A Compilation Framework for Lifelong
Program Analysis and Transformation,” in Proc. 2004 Int’l Symp. on
Code Generation and Optimization (CGO’04), 2004, pp. 75–86.




