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Abstract—The CUDA programming model provides better ab-
straction for GPU programming. However, it is still hard to write
programs with CUDA because both some specific techniques
and knowledge about GPU architecture are required. Hence,
many programming frameworks for CUDA have been developed.
OpenMPC is one of them based on OpenMP. OpenMPC is
an easy-to-write framework for programmers familiar with
traditional OpenMP, but still requires programmers to use the
special directives for utilizing fast device memories. To solve this
problem, this paper proposes a method for allocating appropriate
device memories automatically. This paper also proposes a
method for automatically allocating page locked memory for
the data which are transferred between host and device. The
evaluation results with several programs show that proposed
methods can reduce 52% execution time in maximum.

Index Terms—GPGPU, CUDA, OpenMPC, memory allocation

I. INTRODUCTION

Graphics Processing Unit (GPU) is a specialized processor
for image/video processing. It generally has wide memory
bandwidth and high processing performance. The GPGPU,
which means general purpose computation on GPU, is now
in demand. Hence, for writing the general purpose programs
which are executed on GPU, Compute Unified Device Archi-
tecture (CUDA)[1] is developed by NVIDIA.

The CUDA model achieves speedup by mapping a large
number of threads to the cores on GPU. The GPU cores can
execute the same instructions in parallel on their own threads.
However, to write programs with CUDA, programmers should
explicitly describe thread allocation and data transfer between
CPU and GPU. Therefore, deep knowledge about GPU archi-
tecture and CUDA are required. To solve this problem, many
programming frameworks for CUDA have been developed.
They can reduce the burden on programmers by freeing them
from the special directives of CUDA.

In this paper, we focus on one of the frameworks, Open-
MPC[2]. OpenMPC is based on OpenMP[3]. Therefore, pro-
grammers who are familiar with traditional OpenMP can use
OpenMPC with little effort. However, to write efficient CUDA
programs, OpenMPC still requires programmers to use special
directives for utilizing fast device memories. In addition, the
data transfer between CPU and GPU is not optimized enough
on OpenMPC, because there occur redundant copies on host

memory.
To solve these problems, this paper proposes two methods.

The one is for automatically allocating appropriate device
memories for data. The other is automatically allocating page
locked memory for the data which are transferred between
CPU and GPU. With these methods, we aim to speed-up pro-
grams and to reduce the complexity of CUDA programming.

II. PROGRAMMING ENVIRONMENTS FOR GPU

In this section, we will give an overview of the CUDA
programming model and some programming frameworks for
CUDA. In addition, we describe OpenMPC the target of our
study.

A. CUDA

Now, NVIDIA has provided CUDA for GPU programming.
CUDA has been developed as an integrated development envi-
ronment for GPUs. A program written with CUDA consists of
a host code and a device code. The host code is executed on
CPU, and the device code is executed on GPU. The host code
is a sequential code for CPU, and it has some kernel function
calls in it. The kernel functions are defined in the device code
and executed in parallel on GPU.

A brief architecture of a GPU shipped by NVIDIA is shown
in Fig. 1. Although GPUs are different each other according to
their generations or families, they have a common architecture.
One GPU has dozens of Streaming Multiprocessors (SM),
and each SM has eight Streaming Processors (SP). GPU
can achieve high performance by executing massively parallel
threads simultaneously using SPs. In the CUDA framework,
a GPU can execute 65535 × 65535 × 512 threads across all
SPs. These threads are grouped hierarchically, as shown in
Fig. 2. A set of threads is called a Block, and a set of blocks
is called a Grid. A definition of the number of the threads
per Block and the number of the blocks per Grid is called as
an execution configuration. This can be specified at each call
of kernel functions by using the CUDA language extensions.
Each thread has a unique ID, and an address which is accessed
by the thread can be specified by using the built-in variable
for the ID.

The CUDA memory model is shown in Fig. 3. In the
CUDA memory model, the memory of CPU is called host
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Fig. 1. Brief architecture of GPU

Fig. 2. Hierarchical thread management

memory. On the other hand, the memories on GPU are called
device memories. The CUDA model assumes that each of
CPU and GPU has a separate and unique address space.
For sharing data between CPU and GPU, CUDA provides
some APIs for explicit GPU memory management, including
functions for transferring data between CPU and GPU. There
are several types of device memories; register memory, local
memory, shared memory, global memory, texture memory and
constant memory. Their characteristics such as the physical
location, whether they have caches or not, and so on, are
different. Therefore, if programmers can use more appropriate
device memory considering the characteristics, the program
will run faster. However, some knowledge about different
device memories are required for achieving good performance.

B. Related Work

When writing programs with CUDA, it is necessary to
indicate explicit data transfer between host memory and device

Fig. 3. The CUDA memory model

memories, and to specify an execution configuration. More-
over, to write efficient GPU programs, some knowledge of
GPU architecture is required. However, it is rather difficult
for average programmers.

Hence, some frameworks for CUDA programming have
been proposed. Baskaran et.al.[4] has proposed a compiler
framework for optimizing CUDA programs. It can make global
memory accesses effective. However, the compiler framework
can optimize affine loop nests only.

CUDA-lite[5] is a translator for CUDA programs. With
CUDA-lite, programmers can easily get the programs which
are optimized about memory accesses and kernel configura-
tions. However, it still requires programmers to specify the
data transfers and to define kernel functions.

Another framework called hi-CUDA[6], [7] is also proposed
to provide abstraction of CUDA. It provides some dedicated
pragmas for specifying which data should be transferred
between CPU and GPU, or for specifying which compu-
tation block should run on GPU. The hi-CUDA compiler
then generates CUDA programs automatically by parsing and
interpreting the pragmas. However, it is still necessary for
programmers to learn the syntax of hi-CUDA pragmas, and
then, to use them for specifying data transfers and kernel
computations.

C. OpenMPC

For programmers’ convenience, many frameworks for
CUDA have been proposed as shown in II-B. However,
some specific knowledge of GPU architecture and the parallel
programming model are still required.

Hence, a new framework OpenMPC has been proposed.
In OpenMPC programs, OpenMP pragmas are used for in-
dicating parallelization. OpenMP is a parallel programming
framework, which has been widely used for computation on
CPUs. With OpenMP, programmers can indicate a compu-
tation block, which they want to parallelize, in the source
code by using pragmas. The OpenMP compiler automatically
generates parallelized codes by parsing and interpreting the
pragmas. On the other hand, OpenMPC can achieve speedup
by defining the indicated block as a kernel function, and then
executing the kernel function in massively parallel on GPU.



In addition, OpenMPC compiler automatically detects the
variables which are used in the indicated blocks. The compiler
then generates data transfer codes automatically. Therefore,
programmers do not have to consider whether a variable is
transferred or not. Moreover, an execution configuration is
specified automatically by considering the number of the loop
iteration in the block. As a result, programmers can write
CUDA programs without knowledge of GPU architecture or
parallel programming model.

However, OpenMPC has some problems. The one is that
OpenMPC cannot use appropriate device memories automati-
cally. In the CUDA programming model, programmers can use
several types of device memories, and the way to use device
memories is important for achieving enough performance with
GPUs. However, without specifications given by programmers,
OpenMPC uses global memory which is the slowest in device
memories. In order to use device memories other than the
global memory, it is necessary to explicitly specify which
memory should be used, by using pragmas.

In addition, data transfer between host memory and device
memories is inefficient with OpenMPC. With CUDA, the data
transferred between host memory and device memories should
be located in host page locked memory, where the data is
not swapped out by operating systems. Therefore, the data in
pageable memory should be copied to the page locked memory
before being transferred. To prevent this copy, CUDA provides
the functions which directly allocate page locked memory for
data. However, OpenMPC has no interface for these functions,
and the data should be always copied.

III. AUTOMATIC USE OF APPROPRIATE MEMORIES

In this section, we will propose a method for automatically
allocating appropriate device memories for data. Also, we
will propose another method for automatically allocating page
locked memory for data which are transferred between CPU
and GPU.

A. Automatic Allocation of Appropriate Device Memories

Device memories have some different characteristics each
other. Hence, it is important to properly use the memories.
However, programmers should understand the GPU architec-
ture deeply for using appropriate device memories. Therefore,
we propose a method for automatically allocating device
memories which can be accessed fast. This method allows
programmers to generate efficient code without specifying
which memories should be used.

TABLE I shows the characteristics of device memories
which can be accessed faster than global memory. The details
are shown below.

shared memory
Shared memory is accessible only from all the
threads in the associated block. It is the only writable
memory among the three kinds of memories. Shared
memory is suitable for storing Block-local temporary
data, since 16KB of shared memory is assigned
to each SM. However, when accessing the data

TABLE I
CHARACTERISTICS OF DEVICE MEMORIES

name cache permission access size
Global Memory n/a R/W slow depends on products
Shared Memory - R/W fast 16KB/SM
Texture Memory available R fast depends on products

Constant Memory available R fast 64KB

on shared memory, synchronization in the Block is
required.

texture memory
Texture memory is accessible from all threads in the
associated Grid. Both read and write are available
from CPU but only read is available from GPU.
The data stored in texture memory are called tex-
ture and accessed as a 1-3 dimensional array. The
size depends on products, but maximum width of a
texture in texture memory is 227. The texture should
be accessed through the special functions which are
provided by the CUDA library. In addition, the data
type which can be stored in texture memory must be
signed int, unsigned int, or float.

constant memory
Constant memory is accessible from all threads in
the associated Grid as well as texture memory. The
permission for read and write is also same as texture
memory. The size of the constant memory is only
64KB.

In this paper, we propose a method for automatically using
texture memory and constant memory among these three
memories. In our method, the data for which texture mem-
ory or constant memory can be allocated are automatically
detected, and programmers can use appropriate memories
without considering their characteristics.

B. Automatic Allocation of Page Locked Memory

The data, which are transferred between host memory and
device memories, must be located in page locked memory for
not being paged out by the operating system. Therefore, the
data which are located in pageable memory must be copied to
page locked memory before being transferred. However, if the
data had been located in page locked memory in advance,
the data need not to be copied into page locked memory.
The functions for allocating page locked memory for data are
provided by CUDA library. However, allocating too much page
locked memory causes a performance degradation, because
page locked memory is not paged out by the operating system.
Therefore, we propose a method for detecting the data which
are transferred between host memory and device memory, and
allocating page locked memory only for such data.

The data flow between host memory and device memory
is shown in Fig. 4. With OpenMPC, the data which will be
transferred is located in pageable memory in host memory.
Therefore, (1) the data are copied into page locked memory
first, and then, (2) transferred to device memory. When CPU
receives the computation results from GPU, (3) they are



Fig. 4. Data transfer between host memory and device memory

transferred from device memory to page locked memory, and
then, (4) they are copied again from page locked memory to
pageable memory. Whenever the data are transferred between
host memory and device memory, this copy overhead occurs.

On the other hand, some expressions for allocating page
locked memory for data with CUDA library function are
generated automatically in the proposal method. Therefore,
redundant copies such as (1) and (4) in Fig. 4 is omitted, and
the data can be transferred directly and fast.

IV. IMPROVEMENT OF THE OPENMPC COMPILER

We have improved the OpenMPC compiler to implement
the proposal methods. In this section, we describe the compile
flow of the improved compiler, and how to implement the
proposal methods.

A. Flow of the Compilation Process

OpenMPC provides a compiler which translates OpenMP
programs into CUDA programs, and the special pragmas
which are used for optimizing the output CUDA program.

Fig. 5 shows the processing flow of the improved compiler.
We added two steps, which are filled with dark grey in
Fig. 5, for the proposal methods in the compiler. The existing
OpenMPC compiler receives OpenMP program as its input
and parses it. Then, the compiler generates an Intermediate
Representation (IR) tree. After that, the compiler generates a
CUDA program from the IR tree.

On the other hand, in the proposal method, the compiler
further parses the IR tree, and detects transferred variables and
kernel function calls. Then, the compiler generates a CUDA
program which can use appropriate memories.

B. Allocating Fast Device Memories

As shown in TABLE I, constant memory and texture mem-
ory are read-only from GPU. Therefore, only the data which
are not overwritten in kernel functions can be located in these
memories. In other words, for allocating these memories for
a datum, the associated variable must satisfy both of the two
conditions:

• not on the left side of any assignment operator in any
statement

Fig. 5. The compile flow with proposal methods

1 void kernel 1(int ∗a,int ∗b,int ∗c , int ∗d) {
2 //compute the index of array
3 int i = threadId.x + blockId.x ∗ blockDim.x;
4
5 a[i] = b[i] + c[i];// assignment
6 c[i] += ++ d[i]; // assignment and increment
7 }

Fig. 6. Detection of the presence of assignment or increment or decrement

• not on the left side of any increment/decrement operator
in any statement

In addition, a variable which is used as an argument for
other function call in the kernel function cannot be located
in such device memories. Because such a variable may be
overwritten through the execution of the function body. Struc-
ture variables also cannot be located in fast device memories,
because their data size cannot be estimated.

Now, we explain the method for determining whether a
variable is used as a target of assignment, increment or
decrement, or not. Fig. 6 shows a sample program, and Fig. 7
shows the IR tree which is generated from the fifth line of the
program shown in Fig. 6. Fig. 8 shows the IR tree which is
generated from the sixth line in Fig. 6.

Fig. 7 shows that the variable a is the left child of the
assignment operator. Therefore, the variable a is excluded from
candidates for variables, for which fast device memories can
be allocated. However, the variable b and c are still candidates,
because it is obvious from the right child of the tree that they
are not overwritten.

Next, Fig. 8 shows that the variable c is the left child of
the compound assignment operator. Therefore, the variable c
is now excluded from the candidates. Also, the variable d is
excluded from the candidates, because Fig. 8 shows that the
variable d is the left child of an increment operator.



Fig. 7. Assignment statement Fig. 8. Complex assignment
and increment

1 int y[M]; // defined as an array
2 int Function 0(){
3 int x[N]; // defined an array
4 int ∗gpu x;
5 int ∗gpu y;
6 :
7
8
9 :

10 // xfer to device memory
11 cudaMemcpy(gpu x,x);
12 cudaMemcpy(gpu y,y);
13 :
14
15
16 return 0;
17 }
18
19 int main(){
20 :
21
22
23 Function 0();
24
25
26 return 0;
27 }

Before translated

1 int ∗y; // defined as a pointer
2 int Function 0(){
3 int ∗x; // defined as a pointer
4 int ∗gpu x;
5 int ∗gpu y;
6 :
7 // allocation
8 cudaMalloHost(&x);
9 :

10 // xfer to device memory
11 cudaMemcpy(gpu x,x);
12 cudaMemcpy(gpu y,y);
13 :
14 // free
15 cudaFreeHost(x);
16 return 0;
17 }
18
19 int main(){
20 :
21 // allocate
22 cudaMallocHost(&y);
23 Function 0();
24 // free
25 cudaFreeHost(y);
26 return 0;
27 }

After translated
Fig. 9. An example of translation to allocate page locked memory for data

Consequently, only the variable b is not overwritten, and the
data which are stored in the array variable b can be located in
fast device memories in this kernel function.

Whether constant memory or texture memory should be
allocated for the data is decided by the type of the associated
variable. The size of constant memory is only 64KB. Hence,
for a variable which is not an array, constant memory is
allocated. If the total size of constant memory allocation
becomes over 64KB, the compiler does not allocate constant
memory for any more data. On the other hand, texture memory
is allocated for array variables, because texture memory can
be considered to has no upper limit of its size. However, the
type of variable for which texture memory can be allocated
should be either 8bit, 16bit, 32bit integer or 32bit float.

C. Allocating Page Locked Memory

To transfer data efficiently between host memory and device
memories, we propose a method for directly allocating page
locked memory for the transferred data, using CUDA library
functions. When should page locked memory be allocated and
freed will vary depending on whether the associated variable
is local or global.

Fig. 9 shows an example code. The variable x which is

TABLE II
EVALUATION ENVIRONMENT #1 (GEFORCE GTX280)

OS Fedora15
CPU Core2Quad
Frequency 2.83GHz
Memory 3GB
GPU GeForce GTX280
Number of multiprocessors 30
Number of cores (SP) 240 (30 × 8)
CUDA version 4.0
Compute capability 1.3
Compiler gcc 4.6.1
Compile options -O3
OpenMPC Compiler version 0.31

TABLE III
EVALUATION ENVIRONMENT #2 (TESLA C1060)

OS Fedora15
CPU Phenom II X4
Frequency 3.4GHz
Memory 8GB
GPU Tesla C1060
Number of multiprocessors 30
Number of cores (SP) 240 (30 × 8)
CUDA version 4.0
Compute capability 1.3
Compiler gcc 4.6.1
Compile options -O3
OpenMPC Compiler version 0.31

defined as a local variable of Function 0() is used as an
argument of cudaMemcpy(). Therefore, the variable x will
be transferred between host memory and device memory.
Then, the proposal method considers that page locked memory
should be allocated for the variable x. Consequently, in the
result code of the translation, the variable x is defined as a
pointer variable, and page locked memory is allocated for
the variable by using the CUDA library function cudaMal-
locHost() (line 8). Subsequently, it is freed at the end of
Function 0() (line 15).

On the other hand, the variable y is defined as an global
variable, and it may be accessed in various functions. Hence,
if page locked memory is allocated for the variable y and freed
in Function 0(), the program may run incorrectly. Therefore,
when a variable is global, page lock memory should be
allocated for the variable and freed not in the function, in
which the associated datum is transferred, but in the main
function. Consequently, the codes for allocating page lock
memory for the variable y and freeing it are inserted in the
main function in the result of translation (line 22, 25).

V. EVALUATION

In this section, we discuss the performance of the automatic
memory allocation methods proposed in this paper.

A. Evaluation Environment

The evaluation environments are shown in TABLE II and
TABLE III. We used GeForce GTX 280 and Tesla C1060 for



Fig. 10. Ratio of execution time with GeForce GTX280

evaluation. Each of them has 30 SMs, and each SM has eight
SPs.

Three sets of benchmark programs are used as workloads.
The first is the set of the programs which we have originally
designed. They are PI(montecarlo) which calculates π using
the Monte Carlo method, and MatrixMul which calculates
matrix product. The second is the set of the programs from
OmpSCR[8]. They are PI(integral) which calculates π using
the integral methods, Mandelbrot which estimates the area of
the Mandelbrot set, and Jacobi which solves a finite difference
discretization of Helmholtz equation. The third set is of the
five programs from Rodinia Benchmark suites[9], [10], which
are used for evaluation in [2].

As the input parameters for these workloads, the number
of iterations of PI(montecarlo) is defined as 100,000, and the
size of the matrix used in MatrixMul is 128 × 128. Default
input values are used for PI(Integral), Mandelbrot, and the
programs from Rodinia Benchmark suites. However, the size
of the matrix for Jacobi is defined as 200 × 200, because the
default input size 5,000 × 5,000 is too large and Jacobi can
not run correctly with the input size.

B. Evaluation Results

Fig. 10 and Fig. 11 show the execution time of the work-
loads. We divide total execution time into two parts, kernel
execution and data transfer. The result of each workload
in environment #1 (GeForce GTX280) shown in Fig. 10 is
represented by two bars. The left bars show the results of
OpenMPC, and the right ones show the results of the proposal
method. On the other hand, the result of each workload in
environment #2 (Tesla C1060) shown in Fig. 11 is represented
by three bars. The left bars show the results of OpenMPC, and
the center ones show the results of the proposal method. The
right bars show the results of a variant of the proposed model.
In the variant model, we have set a limit that texture memory
can be allocated for only one array variable, for efficient use
of texture caches. The size of texture cache is 6–8KB, and

Fig. 11. Ratio of execution time with Tesla C1060

allocating too much texture memory may cause frequent cache
misses.

Each bar is normalized to the execution time of OpenMPC.
The result shows that the proposal method achieves perfor-
mance gain with more than half of the benchmark programs.
However, the performance of srad and hotspot is deteriorated.
To examine the cause of the performance deterioration with
these two workloads, we confirmed their assembly codes.
Through the examination, it was found that calculating indices
for accessing to texture data costs much more time than
OpenMPC.

Each of these two programs has a loop block in its kernel
function, and accesses to an array variable in the loop block
iteratively. With the existing OpenMPC, the array variables
are located in global memory and the access to the variables
is optimized by the CUDA compiler nvcc. The redundant
access is reduced, and reloading values from the same address
where is accessed before is avoided. On the other hand,
the array variables are located in texture memory with the
proposal method, and nvcc seems to be not able to optimize
the redundant access to texture memory. Therefore, indices for
accessing to texture data will be calculated and a value which
has been loaded from an address will be loaded again from the
same address. Hence, this causes the performance deterioration
with srad and hotspot. However, the variant model can avoid
the performance deterioration by using only one texture in
each kernel function.

On the other hand, the proposal method can reduce execu-
tion time with more than half of the benchmark programs,
and achieves maximum speed-up with Jacobi. The reason
of the large performance gain with Jacobi is that Jacobi
requires many data to be processed, and most of them are only
read in the program. Incidentally, the variant model achieves
maximum speed-up with bfs, because the limit in the variant
model restrains the performance gain of Jacobi.

As a whole, in environment #1, the proposal method can re-
duce 15% execution time in average, and 52% in maximum. In



environment 2, the proposal methods can reduce 7% execution
time in average, and 49% in maximum, and the variant model
can reduce 18% in average, and 47% in maximum.

VI. CONCLUSION

In this paper, we proposed a method for improving Open-
MPC to automatically allocate appropriate device memories.
This paper also proposed a method for automatically allocating
page locked memory for data which are transferred between
host and device. Through the evaluation with several bench-
mark programs, it is found that the proposal methods can
reduce 15% execution time in average, and 52 % execution
time in maximum.

One of our future works is allocating fast device memories
for more appropriate data. Now, the proposal methods are
applied to all data which are detected as locatable in fast device
memories. However, if the compiler allocates fast device
memories for only the data which are accessed frequently,
more programs might be faster.
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