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ABSTRACT

Real-time video processing applications such as intruder detection system are now in demand and being developed. However, on
general purpose computers, it is difficult to guarantee that enough CPU resources can be surely be provided. We have proposed
a pseudo real-time video processing library RaVioli for solving this problem. RaVioli conceals two types of resolutions, frame
rate and the number of pixels, from programmers. This makes video and image processing programmings more intuitive, but the
performance may be lower by the abstraction overhead. To solve this problem, this paper proposes an improvement of RaVioli
for supporting GPU platforms. For using GPUs effectively, a deep knowledge about them has been required, and this would
have been a burden to programmers. The proposition on this paper provides an easy-to-use framework for developers. They can
benefit from GPU without rewriting their RaVioli programs and get high performance video processing. The experiment results
with image/video processing programs show that the proposed method improves the performance about 151-fold/164-fold in
maximum against traditional RaVioli without rewriting programs, and about 30-fold/4-fold in maximum against a native C++
program.
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1 INTRODUCTION
The demand of the systems, which highly requires real-
time video processing, is rapidly increasing; such as
intruder detection systems, automatic vehicle collision
avoidance systems, and so on. It is also expected that
the performance improvement and the cost reduction
will promote real-time video processing on the general-
purpose computers and operating systems. In spite of
the advances, it is difficult to realize the real-time video
processing on general-purpose operating systems, be-
cause it should be run by constant time interval. The
main reason of the difficulty is the fluctuation in the
throughput of frame rate and in the amount of the avail-
able CPU resources.

To solve this problem, we have proposed a high-level
video processing library RaVioli (Resolution-Adaptable
Video and Image Operating Library) which guarantees
pseudo real-time processing on general-purpose system
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platforms. RaVioli can regulate the throughput rate by
automatically fluctuating spacial resolution and frame
rate according to CPU usage and load. For such dy-
namical fluctuation of the resolutions, a programming
fashion which is independent of the resolutions is re-
quired. RaVioli conceals two resolutions, the spacial
resolution of an image and the frame rate of a video
stream, from programmers for controlling the resolu-
tions automatically at run-time. It makes possible to
exclude the concept of resolutions, and developers can
write video processing programs more intuitively.

However, RaVioli causes the decline of processing
speed that comes from the abstraction overhead. Hence,
to solve this issue, this paper proposes an improvement
of RaVioli to support CUDA GPU platforms which are
ideally suited to multimedia processing. The proposi-
tion of this paper is the method to provide an easy-
to-use programming framework. Developers can im-
plement real-time video processing programs without
considering GPU architectures, and achieve high per-
formance video processing.

2 RESEARCH BACKGROUNDS

2.1 Related Works
For real-time video processor, adjusting the process-
ing load is very important. Nevertheless, writing mul-
tiple routines with different algorithms has been the
only solution for the load adjustment. One example
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Figure 1: Brief architecture of GPU

that has been proposed is the imprecise computation
model (ICM)[1, 2]. In this model, computation accu-
racy is varied corresponding to the given computation
time. With the confidence-driven architecture, which
is based on the ICM, developers have to troublesomely
implement multiple routines with different algorithms
and different loads, and the confidence-driven archi-
tecture selects suitable routine dynamically and empir-
ically among them.

VIGRA[3] and OpenCV[4, 5] are well-known video
processing libraries. They aim at high-level descriptiv-
ity of video processing. Adopting template techniques
similar to the C++ STL, VIGRA allows programmers
to easily adapt given components to their programs.
OpenCV provides many typical video processing algo-
rithms as C functions or C++ methods. However, ad-
justing computation load is difficult to be implemented
with these libraries.

The approach of a library RaVioli[6] is completely
different from these existing computation models or
video processing libraries. RaVioli allows program-
mers to be unaware of the existence of pixels and
frames through their video processing programming.
Concealing pixels and frames from programmers,
RaVioli can vary spacial/temporal resolutions and can
adjust processing load dynamically and automatically.

2.2 GPU and CUDA
A GPU (Graphics Processing Unit) is a specialized
microprocessor for image/video processing. It has wide
memory bandwidth and high processing performance.
A brief architecture of a GPU shipped by NVIDIA
Corp. is shown in Figure 1. Although GPUs are
different according to their generations and families,
they have a common architecture. There are dozens
of Streaming Multiprocessors (SM) in one GPU, and

for example in the GT200 series, each SM has eight
Streaming Processors (SP). The eight SPs in an SM
can run in SIMD (Single Instruction Multiple Data)
fashion. A GPU is a massively parallel multi-core
processor, for example, a GT200 series GPU has 30
SMs, and consequently has 240 SPs.

NVIDIA also provides CUDA (Compute Unified
Device Architecture)[7] for GPU programming. CUDA
is a parallel computing architecture for GPUs. CUDA
also includes compilers and libraries, and provides
APIs for GPU programming. Hence, developers
can easily access memories of the computational
units in GPUs using CUDA. GPUs can achieve high
performance by executing massively parallel threads
simultaneously. In the CUDA framework, a GPU
can execute 65535 × 65535 × 512 threads across all
SPs. CUDA organizes these threads into two levels
of units; Grid and Block. A Block is executed on an
SM, and the threads in a Block can be identified by
three-dimension indices (x,y,z). A set of Blocks is
called Grid, and the Blocks in a Grid can be identified
by two-dimension indices. How many threads are
associated to a Block and how many Blocks per Grid
are called as an execution configuration. Defining
an appropriate execution configuration is a key for
achieving good performance on GPU, but it is rather
difficult for ordinary programmers.

Hence, some frameworks are proposed for CUDA
programming. Baskaran et.al.[8] has proposed a trans-
lator for optimizing CUDA programs. It makes global
memory accesses effective. The compiler framework
optimizes affine loop nests based on a polyhedral com-
piler model. CUDA-lite[9] is another translator for
CUDA programs. It generates a optimized code which
uses appropriate GPU memories. Lee et.al.[10] has
also proposed a optimization framework for GPU pro-
grams. However when using these frameworks, devel-
opers should pay attention to parallelism, and should
add annotations or pragmas for getting efficient code.
On the other hand, since RaVioli hides loop iterations
from developers, essential parallelism or data depen-
dencies between iterations are easily found automati-
cally.

3 OVERVIEW OF RAVIOLI

3.1 Abstraction of Video Processing
RaVioli[6] proposes a new programming paradigm
with which programmers can write video processing
applications intuitively. RaVioli conceals spatial
resolution (pixel rate) and temporal resolution (frame
rate) of a video from programmers. We human beings
naturally have no concept of resolutions through our
visual recognition. For example, we can recognize
object motion in our view without any pixel or
frame. However, pixels and frames are indispensable
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Figure 2: Digital image processing.

for motion object detection programs on computer
systems.

For example, motion object detection programs are
sometimes implemented by using a block matching al-
gorithm, which searches the most similar block be-
tween current window and previous one. The similar-
ity between image windows will be calculated by SAD
(sum of absolute differences) or other alternative meth-
ods, and the methods should be implemented by cumu-
lative pixel value differences. Resolutions are delivered
from the requirement of quantitativeness on comput-
ers. Hence, programmers have to manage resolutions
in their programs although resolutions are not required
essentially for vision. In other words, the presence of
resolutions makes programs unintuitive.

Generally, loop iterations are heavily used in video
processing programs. When converting a color image
to grayscale, for example, each pixel will be converted
to grayscale in innermost iteration, and the process is
repeated for every pixels by loop nests as shown in
Figure 2(a). In RaVioli, an image is encapsulated in an
RV_Image instance, and this repeating process for all
pixels is done by RaVioli automatically, so program-
mers should only write a routine for one pixel as shown
in Figure 2(b). GrayScale() in Figure 2(b) is the rou-
tine defined by the programmer. What programmer
should do are defining function which processes one
pixel and passing the function to an image instance’s
public method procPix(). The proxPix() is defined as a
higher-order method which applies a function passed as
its argument to all pixels one after another. This frame-
work allows programmers to be released from resolu-
tions and the number of iterations. Not only procPix(),
RaVioli also provides some higher-order methods for
several processing patterns; such as template matching,
k-neighbor processing, and so on. As same as images,
videos are also encapsulated in RV_Video instances in
RaVioli. Frames, the components of an RV_Video in-
stance, are concealed from developers. An RV_Video
instance also has several higher-order methods. Devel-
opers should only define a component function, which
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Figure 3: Resolution changes.

manages one frame, and pass the function to an appro-
priate higher-order method for video processing.

Pseudo real-time processing and parallelization are
also resolved by RaVioli. RaVioli conceals resolutions
from programmers, therefore RaVioli can easily vary
resolutions through real-time processing for load re-
duction. Moreover, the iteration unit is so distinct in
RaVioli programs that the programs can be automati-
cally data-parallelized. Sakurai et.al. have taken these
functions up in detail in [6].

3.2 Self-Adjustment of Computation
Load

RaVioli can dynamically vary video resolutions consid-
ering processing load. RaVioli periodically compares
the frame capturing interval and the processing time for
one frame. When the processing time becomes larger
than the capture interval, RaVioli considers it is over-
loaded and reduces resolutions. There are two reso-
lutions; spatial resolution and temporal resolution in
videos. Spatial resolution refers the number of pixels
contained in each frame, and temporal resolution refers
the frame rate. RaVioli applies component functions to
frames or pixels skipping on a certain stride in higher-
order methods mentioned above. Roughening resolu-
tions can be done by raising the stride value, and it
leads to decreasing the computation load. Figure 3(a)
shows which pixels are processed when special stride
increases, and Figure 3(b) shows which frames are pro-
cessed when temporal stride increases.

Priorities can be specified for telling RaVioli which
resolution (special or temporal) should be kept. In a
real-time video application, top priority will be given
to temporal resolution, and RaVioli reduces spatial res-
olution. In other applications such as face authentica-



tion, top priority will be given to spatial resolution, and
RaVioli reduces temporal one. What should be done for
load adjustment is only specifying priorities.

The resolution priority is specified by a tuple of two
values (PS, PT) called a priority set. PS represents the
priority of spatial resolution, and PT the priority of tem-
poral resolution. When (PS, PT) = (3, 7) is specified,
the priority ratio of PS and PT is recognized as 3:7, and
RaVioli manages to keep spatial stride and temporal
stride in the ratio of 7:3. Therefore a video process-
ing application, which fulfills the performance demand
and realizes real-time processing, can be easily imple-
mented.

This algorithm for reducing resolutions is very simple
and naive. However, this simplicity is very important.
Many complement algorithms such as bi-linear, hyper-
cubic, and so on are well known and they can be used.
However, notice that the function of changing resolu-
tions of RaVioli aims at reducing calculations. Adding
calculations for changing resolutions makes no sense.
An application written with RaVioli can achieve real-
time processing without any considerations. Some-
times the output will have low quality, but the appli-
cation does not lose realtimeness. Moreover, defining
priority set appropriately can control the inconvenience
from the quality loss.

4 CUDA SUPPORT FOR RAVIOLI
In this section, CUDA-supported RaVioli (RaVio-
li/CUDA) and a translator which converts traditional
RaVioli programs to programs for RaVioli/CUDA are
proposed.

4.1 Execution Model of Image Processing
with CUDA

Developers can use several memories of GPU with
CUDA. Each memory has different access speed and
size. For achieving high performance image process-
ing, developers should use as fast memory as possi-
ble. For using fast memories, data should be trans-
ferred from main memory to GPU memories. Consider-
ing these memories and execution configurations needs
deep knowledge and dexterity.

In this paper, we propose an extension of higher-order
methods of RaVioli which supports CUDA API. In-
voking these higher-order methods, developers can use
GPUs without considering GPU memories, execution
configurations and other troublesome steps. Figure 4
briefly shows how a GrayScale() function will be ap-
plied to an image by invoking the extended higher-
order method cudaProcPix(). GrayScale() which is to
be passed to cudaProcPix() should be defined as a ker-
nel function. In CUDA, a kernel function specifies the
code to be executed by all threads in parallel.[7]

When cudaProcPix() is invoked with a component
function GrayScale(), RaVioli/CUDA allocates GPU

RV_Image

CPU GPU

RV_Image InImg;

// get Handle of GrayScale()

GetKernelHandle( &cuFunc,

                                “GrayScale” );

InImg.cudaProcPix( &cuFunc );

extern “C” __global__

void GrayScale( ... ){

  :

  // processing on 1 thread

  // monotonize 1 pixel

}

main.cpp (host) kernels.cu (device)

copy (input)

copy (result)

cudaProcPix()

Figure 4: Brief execution model of RaVioli/CUDA

memories and transfers image data from main mem-
ory to GPU memories. After that, an execution con-
figuration is automatically defined according to the in-
put image, and GrayScale() is applied to the whole in-
put image. When completing the application, RaVio-
li/CUDA transfers the result to the main memory on
CPU and deallocates GPU memories. For each other
higher-order method of RaVioli, an associated CUDA-
supported method is defined.

4.2 Execution Model of Video Processing
with CUDA

As same as RV_Image class, CUDA-supported higher-
order methods for RV_Video class are also defined. The
methods for RV_Video not only conceals data transfer
between CPU and GPU, but also parallelize the data
transfer and kernel function execution automatically by
using CUDA stream.

In CUDA, the execution of a kernel function and the
data transfer between host (CPU) and device (GPU) can
be overlapped by using multiple CUDA streams. A
CUDA stream is defined as a sequence of CUDA op-
erations which are executed in-order. Multiple CUDA
streams can be declared and used simultaneously. Each
data transfer between host and device and each execu-
tion of kernel function can be assigned to one of the de-
fined CUDA streams. A host-device data transfer and
a kernel function execution on different CUDA streams
can be executed in parallel.

In RaVioli/CUDA, two CUDA streams are automati-
cally declared when an RV_Video is instantiated. When
a higher-order method of the RV_Video instance is in-
voked, each frame of the video is assigned to the two
CUDA streams alternately. The execution model is il-
lustrated in Figure 5.

First, the stream #1 transfer the frame #1 from host to
device. When the transfer completes, the stream #2 can
transfer the frame #2, and the stream #1 applies kernel
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function to the frame #1 simultaneously. Notice that the
stream #2 cannot transfer the frame #3 as soon as the re-
sult of the frame #1 is sent back to the host, because the
stream #2 will be send the result of the frame #2. This
brings a pipeline bubble. However, in the ideal case in
which every stage takes same latency, the throughput
raises 1.5-fold.

4.3 Translator and Code Conversion
As described above, RaVioli/CUDA can provide an
easy-to-use CUDA programming framework for devel-
opers. Higher-order methods of RaVioli/CUDA con-
ceal almost all steps for using CUDA such as device
handling, memory allocation, execution configuration,
and so on from developers. However, developers still
should modify their traditional RaVioli programs. For
example in Figure 4, the developer should get a han-
dler for a kernel function by calling GetKernelHan-
dler(), and rewrite the higher-order method procPix() to
the associated CUDA-supported higher-order function
cudaProcPix(). The component functions also should
be rewritten to kernel functions for being adapted to
CUDA-supported higher order methods. To dissolve
these troubles, a translator which converts traditional
RaVioli programs to RaVioli/CUDA programs is also
proposed in this paper. Figure 6 shows a compilation
flow with the translator.

Figure 7 shows an example program which converts
color images to grayscale. The translator converts such
programs to two program files; main.cpp for host
CPU and kernels.cu for GPU device. These pro-

1 int main(int argc, char∗ argv[]){
2 RV_Image image;
3 :
4 image.procPix( GrayScale );
5 :
6 }
7

8 void GrayScale(RV_Pixel p1){
9 int ave = ( (p1.getR()) + p1.getG() + p1.getB() ) / 3;

10 p1.setRGB( ave, ave, ave );
11 }

Figure 7: A simple grayscale program with traditional
RaVioli.

1 /∗ main.cpp ∗/
2 RV_CudaDevice device;
3 int main(int argc, char∗ argv[]){
4 RV_Image image;
5 :
6 device.RaCudaInit(); /∗ initialize device ∗/
7 CUfunction cuFunction;
8 device.GetKernelHundle( &cuFunction, "GrayScale" );
9 image.cudaProcPix( &cuFunction );

10 :
11 device.RaCudaExit(); /∗ finalize device ∗/
12 }

Figure 8: Main program translated from Figure 7.

1 /∗ kernels.cu ∗/
2 extern "C" __global__ void
3 GrayScale( RV_Pixel∗ idata, RV_Pixel∗ odata, int width, int height ){
4 int x = blockDim.x ∗ blockIdx.x + threadIdx.x;
5 int y = blockDim.y ∗ blockIdx.y + threadIdx.y;
6 RV_Pixel p1;
7 if( x < width && y < height ){
8 p1 = idata[ y ∗ width + x ];
9 int ave = ( p1.getR() + p1.getG() + p1.getB() ) / 3;

10 odata[y ∗ wid + x].setRGB( ave, ave, ave );
11 }
12 }

Figure 9: Kernel program translated from Figure 7.

gram files are compiled by C++ compiler and CUDA
compiler nvcc, and assembled to an executable. The
result of conversion is shown in Figure 8 and Figure 9.

In the main program, the invocation of procPix() in
Figure 7 is converted to cudaProcPix() in Figure 8. A
statement of GetKernelHandler() is added in main() for
getting a kernel handler for the component function
GrayScale(). RaCudaInit() and RaCudaExit() are func-
tions provided by RaVioli/CUDA for CUDA device ini-
tialization and finalization respectively.

On the other hand in the kernel program, the com-
ponent function GrayScale() is converted to a kernel
function. A kernel function expresses a process for one
thread. In Figure 9, the kernel function GrayScale() is
defined as it processes one pixel on one thread. The def-
inition of GrayScale() also makes continuous threads to
process continuous pixels by calculating indices. This



is for coalesced access of CUDA memories. Mem-
ory accesses to global memory by continuous sixteen
threads in each Block can be issued in parallel by this
code conversion.

The translator searches higher-order method invoca-
tions through RaVioli programs, and generates associ-
ated code for RaVioli/CUDA with converting compo-
nent functions to kernel functions. In this simple exam-
ple program, there need no reduction operation for par-
allelization. However, in RaVioli programs, whether
reduction operations are required or not can be easily
detected, because any dependency between iterations
appears as an assignment to a global variable in the
component function.[6]

Enumerating translation rules in detail is left out for
want of space. There are additional functions of the
translator as follows.
Optimizing Data Transfers Many of video process-
ing programs consist of multiple stages, and the stages
can be pipelined. Since transferring data between CPU
and GPU on each stage of the pipeline is redundant, the
translator optimizes these data transfers. In the output
program converted by the translator, the data are trans-
ferred from CPU to GPU only once at the first stage (i.e.
the first invocation of a higher-order method), and the
result is transferred from GPU to CPU only once at the
last stage.
Using Page-Locked Memory With CUDA, two types
of CPU host memory are available. The one is heap
memory, and the other is page-locked host memory.
Page-locked host memory is mapped into the address
space of the GPU device, and can be accessed directly.
Moreover, data copy between page-locked host mem-
ory and GPU can be fast and asynchronous. The trans-
lator converts programs for using page-locked memory
automatically.

5 EVALUATION RESULTS
A CUDA extension for RaVioli and a translator de-
scribed in section 4 were implemented, and evaluated
with several image/video processing programs. The
evaluation environment is shown in Table 1.

5.1 Evaluation of Image Processing
We used three programs which are grayscale, emboss
filter and template matching for evaluating image pro-
cessing. The evaluation results are shown in Table 2. In
Table 2, Baseline denotes a program written in native
C++, RaVioli denotes a program with traditional RaVi-
oli and RaVioli/CUDA denotes a program with CUDA-
supported RaVioli described in this manuscript. The
size of the image which was used for grayscale and em-
boss filter was 512×512 pixels. For template matching,
the base image has 395× 372 pixels and the template
image has 70×72 pixels.

OS Fedora9
CPU Core2Quad

Frequency 2.83GHz
Memory 3GB

GPU GeForce GTX280
Number of multiprocessors 30

Number of cores (SP) 240
CUDA version 2.2 (Driver API)

Compute capability 1.3
Compiler gcc

Compile options -O3

Table 1: Evaluation environment.

Workloads Baseline RaVioli RaVioli/
CUDA

Grayscale 0.83 2.89 1.21
Emboss filter 2.08 18.62 1.30

Templ. matching 1902.45 9512.69 62.62

Table 2: Execution time. (ms)

0% 20% 40% 60% 80% 100%

Grayscale

Emboss filter

Template matching

GPU memory allocation

Data tranx from Host to GPU

Kernel function

Data tranx from GPU to Host

GPU memory deallocation

Figure 10: Breakdown of processing time with RaVio-
li/CUDA

As we can see in Table 2, RaVioli/CUDA achieves
performance gains of 2.3-fold, 14.2-fold and 151.8-fold
on grayscale, emboss filter and template matching re-
spectively, against traditional RaVioli without rewrit-
ing programs. Typically on template matching, RaVi-
oli/CUDA also achieves about 30-fold speedup against
Baseline.

Nevertheless, the performance of RaVioli/CUDA on
grayscale is still inferior to Baseline. Hence, the break-
down of processing time with RaVioli/CUDA was also
evaluated. The result is shown in Figure 10. As we can
see in Figure 10, the kernel function execution domi-
nates the whole execution time on the template match-
ing program, and the parallelization on GPU brings a



good result. On the other hand, the kernel function exe-
cution accounts for about only 4% of total execution on
the grayscale program, and the data transfer overheads
between host CPU and GPU device are dominant. This
should prevent performance gain on the grayscale pro-
gram. However, a program with small kernel function
does not bring large latency and will not cause a prob-
lem on real-time video processing essentially.

5.2 Evaluation of Video Processing
The performance of video processing with RaVio-
li/CUDA was also evaluated. We have evaluated four
models with an edge detection program. Roughly
speaking, the edge detection processing consists of
three stages; converts input frames to grayscale,
binarize it, and detects object edges. The results of
processing time for ten frames are shown in Figure 11.

RaVioli/CUDA achieved about 90-fold speedup
against traditional RaVioli without rewriting program,
and over 2-fold speedup against the baseline program.
Furthermore, RaVioli/CUDA with CUDA stream
achieved 164-fold speedup against traditional RaVioli,
and about 4-fold speedup against the baseline. As we
can see in the breakdown of the third bar, the latency
of data transfer is longer than the latency of kernel
function execution. However, the result overcomes
the ideal 1.5-fold speedup mentioned in Chap. 4.2.
This can be explained by additional functions of the
translator mentioned in Chap. 4.3.

As a result, RaVioli/CUDA provides a high-level
programming framework for developers. Developers
can use GPU without any knowledge and consider-
ation, and can achieve high performance by using
RaVioli/CUDA. On expensive programs, GPU abilities
can be easily brought out by RaVioli/CUDA, and on
lightweight programs, RaVioli/CUDA can limit the
abstraction overhead of RaVioli effectively.

6 CONCLUSIONS
In this paper, we have proposed an improvement
of RaVioli for supporting CUDA GPU platforms.
RaVioli is a pseudo real-time video processing library
which conceals spacial/temporal resolutions from
programmers and changes resolutions automatically
for adapting to currently available CPU resource.
RaVioli/CUDA not only allows developers to be free
from considering GPU architectures, but also easily
brings out the performance in GPU devices.

The evaluations with several image and video
processing programs have been conducted. The
results with image processing programs have shown
that RaVioli/CUDA achieves 151-fold speedup in
maximum against traditional RaVioli without rewriting
programs, and also achieves about 30-fold speedup
against native C++ programs. The results with a
video processing program of edge detection has shown
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Figure 11: Evaluation of Video Processing.

that RaVioi/CUDA achieves about 164-fold speedup
against traditional RaVioli and about 4-fold speedup
against a native C++ program.

Possible improvement of this study is modifying ex-
ecution configuration appropriately and dynamically.
This can make kernel functions to run more effectively.
Now, RaVioli has good writeability, and many pro-
grams such as edge detection, circle detection, hough
transform, and so on can be written with RaVioli. How-
ever, image reconstruction and frequency processing
are hard to be written with RaVioli at the moment. We
should examine some new higher-order methods for
them. Designing a new video programming language
which cooperates with RaVioli is also left for our fu-
ture work.
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APPENDIX
Another example of code conversion by the translator is
shown in this appendix. Figure 12 is a template match-
ing program written with traditional RaVioli. The codes
shown in Figure 13, Figure 14 and Figure 15 are gener-
ated by the translator from the code in Figure 12.

1 RV_Image tp_image;
2 RV_Coord start;
3 RV_Coord end;
4 int sad;
5

6 void SAD(RV_Pixel p1, RV_Pixel p2){
7 int abs = p1.absDiff(p2);
8 sad += abs;
9 }

10

11 void TPmatching(RV_Image imageSmall,
12 RV_Coord startNow, RV_Coord endNow){
13 sad = 0;
14 int min = INT_MAX;
15 imageSmall.procImgComp(SAD, tp_image);
16 if(min > sad){
17 min = sad;
18 start = startNow;
19 end = endNow;
20 }
21 }
22

23 int main(int argc,char∗ argv[]){
24 RV_Image∗ input_image = new RV_Image(argv[1]);
25 RV_Image∗ output_image = new RV_Image(argv[1]);
26 tp_image = new RV_Image(argv[2]);
27 input_image−>procBox(TPmatching,
28 input_tp−>getStartCoord(),
29 input_tp−>getEndCoord());
30 output_image−>writeRect(start,end);
31 return 0;
32 }

Figure 12: A template matching program with tradi-
tional RaVioli.

The component function SAD() is converted to the
SAD() in Figure 14, and the component function TP-

1 /∗ main.cpp ∗/
2

3 #include "ravioli.h"
4 #include "cutil.h"
5

6 RV_Cuda device;
7

8 CUtexref cuTexTPref; // texture reference for template image
9 CUarray d_TPimage;

10 int3 result;
11

12 void TPmatching(RV_Image∗ image){
13 CUfunction cuFunction;
14 CUfunction cuFunction2;
15 device.GetKernelHundle(&cuFunction, "TPmatching_kernel");
16 device.GetKernelHundle(&cuFunction2, "reduction_kernel");
17 cuParamSetTexRef(cuFunction,
18 CU_PARAM_TR_DEFAULT,
19 cuTexTPref);
20 result = image−>cudaProcBox(&cuFunction,
21 tp_image−>Width,
22 tp_image−>Height,
23 &cuFunction2);
24 }
25

26 int main(int argc, char∗ argv[]){
27 RV_Image∗ input_image = new RV_Image(argv[1]);
28 RV_Image∗ tp_image = new RV_Image(argv[2]);
29

30 device.RaCudaInit();
31 device.GetTexrefHundle(&cuTexTPref,"texTP");
32

33 tp_image−>TexRefSetImage(&d_TPimage, &cuTexTPref);
34 TPmatching(input_image);
35 cutilDrvSafeCall(cuArrayDestroy(d_TPimage));
36 image−>writerect(result.x,result.y);
37

38 device.RaCudaExit();
39 return 0;
40 }

Figure 13: Main program translated from Figure 12.

matching() is Figure 13 and TPmatching_kernel() in
Figure 13.

First, the translator finds the invocation of procBox()
at line 27 in Figure 12, and tries to translate the compo-
nent function TPmatching(). The procBox() is one of
the higher-order methods of RV_Image instance, and it
is for appling a component function repeatedly inside a
certain box defined by two coord arguments.

In the main program shown in Figure 13, TPmatch-
ing() is defined. It gets kernel hundlers for kernel func-
tions, sets up texture reference, and passes kernel func-
tions to the higher-order method cudaProcBox(), which
is the CUDA-supported version of proxBox().

TPmatching() in Figure 13 is only a wrapper func-
tion, and the essence of TPmatching() is translated to
TPmatching_kernel() in Figure 14. It calculates sum
of absolute differences by calling the function SAD().
Now, SAD() is called from device code. Hence, __de-
vice__ qualifier is added to SAD().

Thread-local results are stored in the data4reduction[]
array. In Figure 12, the variable sad is defined as a



1 /∗ kernel.cu (module) ∗/
2

3 texture<int, 2, cudaReadModeElementType> texTP;
4 __device__ int SAD(int∗ idata, int wid, int hei,
5 int widBox, int heiBox, int x, int y){
6 int sad = 0;
7 int p1, p2;
8 for(int j = 0; j < heiBox; j++){
9 for(int i = 0; i < widBox; i++){

10 p1 = idata[ (y + j) ∗ w + (x + i) ];
11 p2 = tex2D(texTP, i, j);
12 int abs = absDiff(p1, p2);
13 sad += abs;
14 }
15 }
16 return sad;
17 }
18

19 extern "C"
20 __global__ void
21 TPmatching_kernel(int∗ idata, int4∗ data4reduction,
22 int wid, int hei, int widBox, int heiBox){
23 int x = blockDim.x ∗ blockIdx.x + threadIdx.x;
24 int y = blockDim.y ∗ blockIdx.y + threadIdx.y;
25 int incX = gridDim.x ∗ blockDim.x;
26 int incY = gridDim.y ∗ blockDim.y;
27 int sad;
28 int min = INT_MAX;
29 for(int j = y; j < (hei − heiTP); j += incY){
30 for(int i = x; i < (wid − widBox); i += incX){
31 sad = SAD(idata, wid, hei, widBox, heiTP, i, j);
32 if(sad < min){
33 data4reduction[y ∗ 256 + x].z = sad;
34 data4reduction[y ∗ 256 + x].x = i;
35 data4reduction[y ∗ 256 + x].y = j;
36 }
37 }
38 }
39 }

Figure 14: Kernel module program translated from
Figure 12.

global variable and overwritten in the component func-
tion TPmatching(). This lets the translator know that
there needs a reduction operation for the variable sad.
Hence, the code for reduction shown in Figure 15 is
also generated.

The code in Figure 15 reduces the thread-local re-
sults. Gathering the data over threads on shared mem-
ory in each Block, the minimum value and its coordi-
nation is settled, and the process is repeated over all
Blocks by for loop.

The code through the line 19 to 29 in Figure 15, six-
teen threads in each Block access continuous addresses
in shared memory. Hence, bank conflict and Warp di-
vergence can be avoided.

1 /∗ reduction code ∗/
2

3 extern "C"
4 __global__ void
5

6 reduction_kernel(int4∗ data4reduction, int4∗ g_odata){
7 __shared__ int sdatax[256];
8 __shared__ int sdatay[256];
9 __shared__ int sdataz[256];

10

11 // from Global Memory to Shared Memory
12 unsigned int tid = threadIdx.x;
13 unsigned int i = blockIdx.x ∗ blockDim.x + threadIdx.x;
14 sdatax[tid] = data4reduction[i].x;
15 sdatay[tid] = data4reduction[i].y;
16 sdataz[tid] = data4reduction[i].z;
17 __syncthreads();
18

19 // reduction operations on Shared Memory
20 for(unsigned int s = blockDim.x / 2; s > 0;s >>= 1){
21 if(tid < s){
22 if(sdataz[tid] > sdataz[tid + s]){
23 sdatax[tid] = sdatax[tid + s];
24 sdatay[tid] = sdatay[tid + s];
25 sdataz[tid] = sdataz[tid + s];
26 }
27 }
28 __syncthreads();
29 }
30

31 if(tid == 0){
32 g_odata[blockIdx.x].x = sdatax[0];
33 g_odata[blockIdx.x].y = sdatay[0];
34 g_odata[blockIdx.x].z = sdataz[0];
35 }
36 }

Figure 15: Reduction operations generated from
Figure 12.




