
Input Entry Integration
for an Auto-Memoization Processor

Ryosuke ODA∗, Tatsuhiro YAMADA∗, Tomoki IKEGAYA∗,
Tomoaki TSUMURA∗, Hiroshi MATSUO∗ and Yasuhiko NAKASHIMA†

∗Nagoya Institute of Technology
Gokiso, Showa, Nagoya, Japan

Email: camp@matlab.nitech.ac.jp

†Nara Institute of Science and Technology
8916-5, Takayama, Ikoma, Nara, Japan

Email: nakashim@is.naist.jp

Abstract—We have proposed an auto-memoization processor
based on computation reuse. The table for registering inputs/out-
puts is implemented by a ternary CAM, and the input sequences
are stored onto the table, being folded into tree forms. This paper
proposes a new registration model for merging multiple input
entries into a single entry. The new model can efficiently store
input values and can reduce the search cost. The result of the
experiment with SPEC CPU95 suite benchmarks shows that the
new model improves the maximum speedup ratio from 40.5% to
50.0%, and the average speedup ratio from 10.5% to 16.4%.

I. INTRODUCTION

So far, various speed-up techniques for microprocessors
have been proposed. The performance of microprocessors had
been controlled by the gate latencies, and it had been rela-
tively easy to speed-up microprocessors by transistor scaling.
However, the interconnect delay has been going major, and
it has become difficult to achieve speed-up only by higher
clock frequency. Therefore, speed-up techniques based on ILP
(Instruction-Level Parallelism), such as superscalar or SIMD
instruction sets, have been counted on.

A program generally forms a poset, or a lattice. It has
a length along time axis, and has a width (i.e. parallelism)
orthogonal to time axis. Traditional speed-up techniques men-
tioned above are all based on some parallelisms in different
granularities. In other words, their approaches aim to increase
performance by shrinking the width of the program lattice.

On the other hand, we have proposed an auto-memoization
processor based on computation reuse[1][2]. In contrast to
traditional speed-up techniques for microprocessors, memo-
ization, or computation reuse, tries to shrink the length of
the program lattice. As a speedup technique, memoization
has no relation to parallelism of programs. It depends upon
value locality, especially input values of functions or loops.
Therefore, memoization has a potential for breaking through
the stone wall against which the speedup techniques based on
ILP have been up.

In the auto-memoization processor, the table for registering
inputs/outputs is implemented by a general-purpose ternary

CAM (Content Addressable Memory). The width of CAM is
limited, and the processor can’t register any input sequence in
a single entry. Hence, the input sequences are stored onto the
table by using multiple entries, being folded into tree forms.

In this paper, we propose a new registration model which
integrates multiple entries into a single entry by sorting them.
This can make reuse overhead lower and the usage of input
entries smaller. We also propose a model for keeping tree
structures correctly when input entry integration is applied.

II. RESEARCH BACKGROUND

In this section, we describe about an auto-memoization
processor and it’s behavior.

A. Auto-Memoization Processor

Computation reuse is a speed-up technique. It is storing the
input sequences and the results of some computation regions,
such as functions, for later reuse and avoiding recomputing
them when the current input sequence matches one of the
past input sequences. It is called memoization[3] to apply
computation reuse to computation regions in programs.

The auto-memoization processor, which we have proposed,
makes traditional load-modules faster without any software
assist. There is no need to rewrite or recompile programs.
The auto-memoization processor dynamically detects func-
tions and loop iterations as reusable regions, and memoizes
them automatically. However, a loop, which uses its iterator
variable as one of its inputs, never benefits from memoization.
Hence, we have installed some speculative cores to our auto-
memoization processor for reusing loops. The brief structure
of the processor is shown in Fig.1.

The auto-memoization processor consists of the memoiza-
tion engine, MemoTbl and MemoBuf. MemoTbl is a set of
tables for storing input/output sequences of past executed
computation regions. MemoBuf works as a write buffer for
MemoTbl.

Entering to a memoizable region, the processor refers to
MemoTbl and compares the current input sequence with

tsumura
テキストボックス
This paper is author’s private version of the paper published as follows:Proc. 2nd Int'l. Conf. on Networking and Computing (ICNC'11), pp.179–185Copyright (C) 2011 IEEEDOI: 10.1109/ICNC.2011.34

D1$

Memo
Buf

ALU

Registers

Memoize
engine

Memoize
engine

Main Core

D2$

reuse
test
reuse
test

reuse
test
reuse
test

write
back
write
back

write
back
write
back

storestore

D1$

Memo
Buf

ALU

Registers

Speculative Core(s)

storestore

Input
Pred.

L2RBMemoTbl

Fig. 1. Structure of Auto-Memoization Processor.

2011/9/8

1

RFid type addr step OvhR OvhW

RFid key val ec
flag

next
adr

W1
ptr

out
adr val

RF

RB RA W1
for memoization for overhead filter

Fig. 2. Structure of MemoTbl.

former input sequences which are stored in MemoTbl. If the
current input sequence matches with one of the stored input
sequences on MemoTbl, the memoization engine writes back
the stored outputs, associated with the input sequence, to the
cache and the registers. This omits the execution of the region
and reduces the total execution time.

If the current input sequence does not match with any past
input sequence, the processor stores the inputs and the outputs
of the region into MemoBuf while executing the region as
usual. The input sequence consists of the register/memory
values which are read over the region, and the output sequence
consists of the values which are written. If the region is
a function, its return value is also included in the output
sequence. Reaching the end of the region, the memoization
engine stores the content of MemoBuf into MemoTbl for
future reuse.

The MemoTbl consists of four tables. They are RF for the
start addresses of the instruction regions, RB for the input data
sets of the instruction regions, RA for the input address sets
of the instruction regions and W1 for the input address sets of
the instruction regions. The structure of MemoTbl is shown
in Fig.2.

Each RF line corresponds to a reusable computation region.
One RF line has two groups of fields, the one is for compu-
tation reuse and the other is for the overhead filter which will
be explained later in II-C. The fields for computation reuse
store whether the region is a function or a loop (type) and
the start address of the region (addr). The fields for overhead

filter store the execution cycles of the region (step) and it’s
past reuse overhead (Ovh).

RB is implemented with a ternary CAM, so that input
matching can be completed fast by associative search. The
CAM has limited width, so the processor can’t register any
input sequence in a single entry. Each RB entry can hold single
cache line, and an input sequence over multiple cache lines is
registered onto RB using several entries. An RB entry holds an
index key for parent entry (key) and input values (val). Each
bit in the val fields can represent 0, 1 or don’t care. When a
variable is read as an input, its whole cache line is stored in
an RB entry, masking unassociated bits as don’t care.

An RA line has an input address which should be tested next
(next adr). RA has the same number of entries as RB entries,
and each RA entry is correspond to an RB entry which has
the same index. An RA entry has a flag, which shows whether
it is a terminal entry of an input sequence (ec flag), and if the
entry is a terminal, it has a pointer (W1 ptr), which refers a
W1 entry for associated outputs.

A W1 entry has addresses (out adr) and values (value) of
an output sequence. If all inputs of a reusable region have
matched with one of the stored input sequence on MemoTbl,
the processor can get the output sequence from W1.

As mentioned above, the auto-memoization processor also
has some speculative cores. While the main core executes
a memoizable computation region, speculative cores execute
the same region using predicted inputs, and stores the results
into MemoTbl. The inputs are predicted by stride prediction
using the last two input sequences stored in RF. If the input
prediction succeeds, the main core can omit intended execution
by reusing the result registered by one of the speculative cores.

Here, the bandwidth of MemoTbl does not matter. The
speculative cores have their own MemoBuf, and their write
access to MemoTbl will shift off each other because specu-
lative executions are issued sequentially. Hence, there occurs
little conflicts between the access to the CAM.

B. Input Entry and Input Matching

A series of inputs, or an input sequence for a certain instruc-
tion region can be represented as a sequence of tuples, each of
which contains an address and a value. In a certain instruction
region, the series of input addresses sometimes branch off
from each other. For example, after a branch instruction, what
address will be referred next relies on whether the branch was
taken or untaken. Therefore, the universal set of the different
input sequences for an instruction region can be represented
as a multiway input tree. A series of inputs of a memoizable
region is represented as a way from the root to a leaf on this
tree. Hence, the auto-memoization processor should hold input
sequences as a tree structure.

Fig.3(a) shows an example of a tree structure of input
sequences in the traditional model. Each node of the tree
represents memory address which is read in the instruction
region, and each edge represents the stored value in it. Here
End represents the terminal of a sequence. In the input values,
X in input values represents a don’t care nibble in the cache

2011/9/8

1

Register A212XX
56XX A4

4321
XX65

A1
A5

XX55
XX65

1000 A1 ・・・(i)
・・・(ii)

End
End

(a) Tree of input sequences in the traditional model

2011/9/8

1

(6)

(2)
Rfid key val ec

flag
next
adr

W1
ptr

10 FF 1000 0 A1 Null
10 00 12XX 0 A2 Null
10 01 4321 0 A1 Null
10 02 XX55 1 Null 1
10 00 56XX 0 A4 Null
10 04 XX65 0 A5 Null
10 05 7777 1 Null 2
: : : : : :

RB RA

00
01
02
03
04
05
06
:

A1 5678
A2 4321
A3 5555
A4 8765
A5 7777
: :

Cache

(1)

(3)

(4)

(5)
(7)

(b) Storing and Matching

Fig. 3. Input sequences and how they are registered.

line, and will not be tested. First, the values of registers are
read as inputs, and now assume that values are 1000. Next,
the address A1 should be accessed. In the input sequence (i),
the input value in the first half of A1 cache line is 12, and A2
will be read next. On the other hand, in the input sequence
(ii), the value of A1 is 56XX, and A4 will be read next.

Now, there are two nodes which represent same A1 cache
line in the input sequence (i). One of these nodes is associated
to the input value which is read from the address of the first
half of A1, and the other is of the latter half of A1. This is
because that the input values construct a path in the input tree
in the order of that they are read from registers or memories.
On the other hand, the processor can merge multiple values
which are continuously read from a common cache line into
one edge. For example, the node A2 in the input sequence
(i) is associated with multiple values which are continuously
read.

Fig.3(b) shows how the input sequences shown in Fig.3(a)
are registered onto RB/RA. In this example, the index of the
associated RF entry is assumed as 10, and it is stored in
RFid fields. Fig.3(b) also shows an input matching flow on
MemoTbl as (1)...(7). This flow is for searching the input
sequences (ii) shown in 3(a). First, the auto-memoization
processor reads the values of registers when the start address of
the instruction region is detected. Then, the processor searches
the root entry whose key is FF, and whose val matches to
the values of the current registers. Now, the line 00 matches
(1). Next, the value of A1 is read because next adr of the
line 00 in RA indicates A1 (2). Then, the processor searches
the entry whose key is 00, and whose val matches to the
value of A1 (3). This process is applied repeatedly (4)...(7)
until all input values have been compared. Each node in the
input sequence tree is mapped onto a line in RB/RA as shown.
Hence, search overhead is proportional to the number of nodes
which construct the input sequence.

1 int func(int ∗a, int ∗b){
2 int i, c[3], d[2];
3 for(i=0; i<2; i++) {
4 c[i] = a[i];
5 d[i] = b[i];
6 }
7 c[i] = a[i];
8 return 0;
9 }

Fig. 4. A sample code.

C. Overhead Filter

For some reusable regions, these overhead may outweigh the
eliminated execution cycles by reuse. This will go for some
regions which have many input values to be tested, and all tiny
regions. Hence, the auto-memoization processor has a structure
which estimates the effect of reuse, and avoids memoizing
unsuitable instruction regions. With the execution cycles step
of the region, the processor calculates the performance gain
in terms of omitted cycle as

step − OvhR − OvhW (1)

where OvhR and OvhW represent search/write-back over-
heads for the region respectively. If the value is negative,
applying memoization will decrease the performance, and the
processor stops reusing the region.

III. INPUT ENTRY INTEGRATION

In this section, we will propose a new execution model
which integrates multiple input entries into a single entry.

A. Entry Integration

As mentioned in the previous section, several input values
which are continuously read from the same cache line can
be registered in one entry. However, the values are registered
separately into multiple entries when they are not read con-
tinuously even if they are on same cache line and the number
of entries and the search cost for the region might increase.

Therefore, we propose a new model which integrates input
entries by sorting the nodes in input trees. This model can
reduce the usage of MemoTbl entries and the search overhead.

Now, let us see how the new model can reduce the number
of MemoTbl entries and the search cost with the sample code
shown in Fig.4. This program is executed with three input
sequences shown in TABLE I. Here, the array a is sequentially
allocated from the address 1000, and the array b is also
sequentially allocated from 2000. There are both a function
and a loop in the sample code, but we will consider the inputs
only for the function.

In the traditional model, input values are serialized in
accessed order, and the input tree for the input sequences
shown in TABLE I will be constructed as shown in Fig.5(a).
When the processor executes the sample code with the input
sequence L, it reads a[0] in the 4th line and b[0] in the 5th
line. The processor registers these values as (1) and (2). Also

TABLE I
EXAMPLE INPUT SEQUENCES

a[0] a[1] a[2] b[0] b[1]
Address 1000 1004 1008 2000 2004
Input Sequence L 1 2 7 3 4
Input Sequence M 1 2 8 3 4
Input Sequence N 1 2 9 3 4

2011/9/8

1

XX9X

XX8X

[1000] [2000] [1000]3XXX1XXX X2XX [2000] [1000]X4XX EndXX7X
End

End

End34XX
End34XX
End34XX

(1) (2) (3) (4) (5)

(6)

(7)

・・・(L)
・・・(M)
・・・(N)

127X
128X
129X

・・・(L)

・・・(M)

・・・(N)

[1000] [2000]

[2000]
[2000]

(a) the traditional model.

2011/9/8

1

XX9X

XX8X

[1000] [2000] [1000]3XXX1XXX X2XX [2000] [1000]X4XX EndXX7X
End

End

End34XX
End34XX
End34XX

(1) (2) (3) (4) (5)

(6)

(7)

・・・(L)
・・・(M)
・・・(N)

127X
128X
129X

・・・(L)

・・・(M)

・・・(N)

[1000] [2000]

[2000]
[2000]

(b) the new integration model.

Fig. 5. Example of input entry structure

in the next iteration, the processor reads a[1] and b[1],
and it registers these values in the same way(3)(4). Then,
the processor reads a[2] in the 7th line and registers this
value(5). Consequently, each entry has only a single value in
it. The values of the three input sequences are different each
other only by the value of a[2]. Hence, the entries other
than a[2] are merged and shared between the three input
sequences in the input tree. On the other hand, the terminal
entry for a[2] is not shared and each input sequence has its
own leaf entry (5), (6) and (7).

In the new model proposed in this paper, the processor
integrates multiple entries by sorting them by memory address.
The resulting tree with the new model is shown in Fig.5(b).
When the processor executes the sample program with the
input sequence L, the values of a[0] and b[0] are registered
in the same way as the traditional model. Next, the processor
reads a[1]. Its cache line address is same as a[0]. So, the
processor registers the value of a[1] into the entry which
has the value of a[0], and the value of the address 1000
is changed from 1XXX to 12XX. The value of b[1] is also
integrated into the 2000 entry which already has the value
of b[0]. Then, the processor reads a[2] in the 7th line. Its
cache line address is same as a[0] and a[1], and the value
of a[2] is registered into the entry which already has the
value of a[0] and a[1].

In this example, seven entries are used for storing the all
input sequences in the traditional model. On the other hand,
only six entries are needed for storing them in the new model,
and the less MemoTbl entries are required. However, it might
be more difficult to construct the input tree in the proposal
model. This is because that an input which is accessed earlier
has high possibility of being shared between multiple input
sequences, and should be placed near the root of the input
tree. In some cases, more entries may be required for storing

all input sequences, because there will be less opportunities to
share nodes between them than the traditional model. Assume
that there are two input sequences other than the three shown
in TABLE I, and the two also differs from the three only
by the value of a[2]. In this case, nine entries are required
with the traditional model, but ten entries with the new model.
However, how many entries should be searched per input
sequence has no relation to the entry sharing. For example,
the processor should trace five entries for single call of the
function shown in Fig.4 in the traditional model, but only two
entries in the proposal model. Hence, the search overhead
can be reduced by integrating the input entries under any
circumstances.

B. Keeping Correct Structure of the Input Tree.

As mentioned above, the values are registered in the order
that they are read in the traditional model. When registering
new entry, the processor searches the entry for deciding
whether the entry is already registered and can be shared.
We call this search-before-register. However, if the processor
integrates multiple entries without considering the accessed
order of the input values in the proposal model, there will
be several entries which have same values with different don’t
care masks. Such entries lead to misdirected detection through
registering input values onto MemoTbl. The misdirected detec-
tion which may occur through the search-before-register might
make false tree structure because the entries with different
don’t care masks are registered as a common entry. This false
tree structure can cause false computation reuse, and false
results of executions. Hence, it should be confirmed that all
matches in search-before-register are not misdirected. This can
be implemented by comparing the don’t care masks.

Fig.6 shows how an entry integration causes misdirected
detections. In this example, the values of A1 and their next
input addresses are different between the input sequence (i)
and (ii) in Fig.6(a). The address A1 might be of a variable
which is used in a condition statement. In this case, the next
address of A1 is same as the previous address of A1 in the
input sequence (ii), but not in (i). The two entries in (ii) can be
integrated in the new model, and now the tree is as shown in
Fig.6(b). In these two input sequences, the values associated
with 4000 cache line are 1234 in (i) and 12XX in (ii). Now,
the value 1234 is implied in 12XX, and the traditional auto-
memoization processor considers these two entries as same.
After the integration, these two entries are merged and shared
incorrectly in MemoTbl as shown in Fig.6(c). This false tree
structure can cause false computation reuse because latter half
values of A1 entry will be not tested.

For avoiding the incorrect integration, the new model com-
pares the don’t care masks of two entries, and integrates them
only if the masks are same. If these masks are not same, the
processor makes new route (ii) without sharing the entry as
shown in Fig.6(d). Hence, the both entries with the values
12XX and 1234 will be registered in MemoTbl. Now, a search
for 1234 will match both of these entries. Therefore, the
multi-match will occur when the processor searches the value

2011/7/12

1

[4000] A1 [8000]111112XX ・・・(i)XX55

[4000] A1 [4000]222212XX XX34

[4000] 1234

[4000] A1 [8000]111112XX XX55

2222

・・・(ii)

Integration

[4000] A1 [8000]111112XX XX55

A1 2222

match

End

End

・・・(i)

・・・(ii)

End

End

・・・(i)

・・・(ii)

End

End

[4000] A1 [8000]12XX XX55

1234

・・・(i)

・・・(ii)

End

EndA1

1111

2222

(a) Input Integration across the conditional branch

2011/9/8

1

[4000] A1 [8000]111112XX ・・・(i)XX55
[4000] A1 [4000]222212XX XX34

[4000] 1234
[4000] A1 [8000]111112XX XX55

2222

・・・(ii)
Integration

[4000] A1 [8000]111112XX XX55

A1 2222
match

End
End

・・・(i)

・・・(ii)

End

End

・・・(i)

・・・(ii)

End

End

[4000] A1 [8000]12XX XX55

1234

・・・(i)

・・・(ii)

End

EndA1
1111

2222

(b) Misdirected match detection

2011/9/8

1

[4000] A1 [8000]111112XX ・・・(i)XX55
[4000] A1 [4000]222212XX XX34

[4000] 1234
[4000] A1 [8000]111112XX XX55

2222

・・・(ii)
Integration

[4000] A1 [8000]111112XX XX55

A1 2222
match

End
End

・・・(i)

・・・(ii)

End

End

・・・(i)

・・・(ii)

End

End

[4000] A1 [8000]12XX XX55

1234

・・・(i)

・・・(ii)

End

EndA1
1111

2222

(c) False tree structure

2011/9/8

1

[4000] A1 [8000]111112XX ・・・(i)XX55
[4000] A1 [4000]222212XX XX34

[4000] 1234
[4000] A1 [8000]111112XX XX55

2222

・・・(ii)
Integration

[4000] A1 [8000]111112XX XX55

A1 2222
match

End
End

・・・(i)

・・・(ii)

End

End

・・・(i)

・・・(ii)

End

End

[4000] A1 [8000]12XX XX55

1234

・・・(i)

・・・(ii)

End

EndA1
1111

2222
(d) Fixed tree structure

Fig. 6. Fixing of false tree structure.

1234. Now, we assume that the priority encoder of the ternary
CAM for MemoTbl is designed to output the first match-line.

When a misdirected match occurs through input search
for computation reuse, the processor can continue searching
further input values. After then, the variable used in a condition
statement will be compared before long, and its input matching
will fail. Now, as mentioned above, when multi-match occurs,
the first match-line will be selected. The computation reuse
will be succeeded if the selection is appropriate and fail if it
is not. Therefore, false computation reuse will not be applied
even if multi-match is occurred through the input search for
computation reuse. There are no additional overhead with the
new model, because the search cost will be reduced by the
input integration. However, the performance can be slightly
lower, because the hit rate of MemoTbl decreases under the
situation where an inappropriate entry is selected in multi-
matches.

IV. IMPLEMENTATION

In this section, an implementation for the input integration
model will be described. In the previous section, we have
assumed that the all input/output values are on memory.
However, register values also can be inputs/outputs of the
memoizable regions. Hence, the auto-memoization processor
registers not only the memory values but also the value of
various registers as inputs/outputs.

As mentioned in II-A, MemoBuf is used as a write buffer
for MemoTbl. The detailed structure of MemoBuf is shown
in Fig.7. MemoBuf has a number of entries, and one entry
corresponds to one input/output sequence. Each entry has a
field for storing an index for RF (RFid), the stack pointer
(SP) of when the memoizable region begins, the return value
of the function or the terminal address of the loop (FOfs),
input values (Read) and output values (Write). In the Read and

2011/9/8

1

RFid SP FOfs
Read Write

#1 … #n #1 … #n
addr val addr val addr val addr val

Fig. 7. Structure of Memobuf.

Write fields, entry has the kind of the registers or the cache
line addresses (addr) and input/output values (val). Here, val
can also hold don’t care masks as well as in MemoTbl.

There is no need to register the value which is already
registered in MemoBuf as an input or output. Now, assume
that the processor detects a load instruction while executing a
memoizable region. First, Read and Write fields are searched
for finding whether the registering value has already been
registered as an input or an output. The processor searches
for an entry which has the same addr with the registering
value. When such an entry is found, the processor compares
the mask of its val and the mask of registering value. If they
are same, it is found that the input value has already been
registered, and the processor completes the search. Otherwise,
the processor continues searching. Consequently, if such an
entry is not found on MemoBuf, the processor makes new
entry for the registering value.

The processor needs a mechanism for detecting some multi-
ple values which can be registered in an entry, or be integrated.
The traditional model has a similar mechanism for integrating
multiple continuous read into single entry, as mentioned in
II-B.

In the traditional model, whether the registering value can
be merged into one of the entries on MemoBuf is decided by
searching Read fields. The detail of this process is described
below using Fig.8. In the Read fields, the values of argument
ARG, cache line address 8000, global register GR, and cache
line address 4000 are sequentially registered. If the processor
reads the value X0XX from the address 8000 in this situation,
the Read fields are searched from #1 shown as (A). Now,
the entry for the same cache line is discovered in #2. The
value is 1XXX and is not same with the registering input value
X0XX, but they are on same cache line and the difference
is represented by don’t care masks. The addresses of these
value are not same because the masks of these entries do not
match. However, the entry #2 is not the terminal entry and the
reads of the values X0XX and 1XXX are not continuous. So,
the processor doesn’t integrate these entries. Consequently, the
input is registered in the empty entry #5.

On the other hand, in the new model, multiple entries for
the same cache block can be integrated even if they are read
separately. With the example shown in Fig.8, if the processor
reads a value X0XX, the Read fields are sequentially searched
in turn from #1, shown as (B). Then, the entry for the same
cache block is discovered in #2, and the processor integrates
value X0XX to #2. Consequently, the value 10XX is stored to

2011/9/8

1

Found

(A) Traditional model End

Read
#1 #2 #3 #4 #5 …

addr val addr val addr val addr val addr val

ARG 1111 [8000] 1XXX GR 2222 [4000] 3333 Null Null

(B) New model

addr val

[8000] X0XX

Fig. 8. Searching Read Field

TABLE II
SIMULATION PARAMETERS

MemoBuf 64 kBytes
MemoTbl CAM 128 kBytes
Comparison (register and CAM) 9 cycles/32Bytes
Comparison (Cache and CAM) 10 cycles/32Bytes
Write back (MemoTbl to Reg./Cache) 1 cycle/32Bytes
D1 cache 32 kBytes

line size 32 Bytes
ways 4 ways
latency 2 cycles
miss penalty 10 cycles

D2 cache 2 MBytes
line size 32 Bytes
ways 4 ways
latency 10 cycles
miss penalty 100 cycles

Register windows 4 sets
miss penalty 20 cycles/set

the entry #2.
As mentioned in III-B there is a possibility to apply false

computation reuse by misdirected match. Then, in the proposal
model, a logic for comparing the don’t care masks is installed.
This comparison is done as a part of the process for registering
inputs onto MemoBuf, and this process can be overlapped by
the program execution.

V. PERFORMANCE EVALUATION

A. Simulation Environment

We have developed a single-issue SPARC-V8 simulator
with auto-memoization structures and three speculative cores.
This section discusses the performance of the new integration
model. The simulation parameters are shown in TABLE II.
The cache structure and the instruction latencies are based on
SPARC64-III[4]. The on-chip CAM for RB in MemoTbl is
modeled on R8A20410BG[5]. The latencies of the CAM are
defined on the assumption that the clock of the processor is
10-times faster than the CAM.

B. Average Number/Length of Entries

First, we have evaluated two statistics of input sequences.
The one is average entries; the average of how many entries
are used per input sequences. The other is average length; the
average of how long each entry is.

The average entries is calculated by dividing the number of
total entries by the number of registered input sequences. The

2011/9/8

1

2.5

2.0

1.5

1.0

0.5

0

Average LengthAverage Entries

INT FP

Fig. 9. average entries and average length.

average length is calculated by dividing the sum of length of
total entries by the number of input sequences. These averages
will differ from each other, because some entries are shared
between input sequences.

Fig.9 shows the two averages of the new integration model
with SPEC CPU 95 benchmark suite. Each workload is
represented by two bars in this chart. The left bar plots average
entries and the right bar plots average length. Each bar is
normalized to the number of which in the traditional model.

Looking at the Fig.9, it is found that both averages are re-
duced drastically. Especially with 125.turb3d, average entries
is reduced 73.7%, and average length is reduced 69.5%. How-
ever, these values with 107.mgrid are drastically increased.
Through a detailed examination with 107.mgrid, it is found
that the input sets for a certain instruction region which has
numerous inputs are not registered in the traditional model,
but registered in the new model. The reason is that the length
of entries for the input sets was too long for storing onto
MemoBuf in the traditional model, and the instruction region
could not be memoized. However in the new model, the
length is reduced by the input integration, and the region
can be memoized. On the other hand, average entries with
147.vortex is slightly increased than the traditional model
while the average length is reduced. This reason is that it
becomes difficult to sharing the entries by applying the new
integration model as described in III. The decrease of average
length means that the search overhead for computation reuse
will be reduced, and the increase of average entries means
that less input sets can be stored on the MemoTbl and the hit
rate of computation reuse may be lower.

C. Execution Cycles with SPEC CPU95

Next, we have evaluated the execution cycles. The evalua-
tion results are shown in Fig.10. We have evaluated following
three models, no-memoization model (N), traditional model
(M) and input entry integration model (I). Fig.10 shows the
normalized execution cycles of these models. Each bar is
normalized to the number of executed cycles of (N).

The legend in Fig.10 shows the breakdown items of total
cycles. They represent the executed instruction cycles (’exec’),

2011/9/8

1

1.2

1.0

0.8

0.6

0.4

0.2

0

winD$2 D$1
exec read write

(N):No Memoization

INT FP

(I):Input Entry Integration
(M):Memoization

Fig. 10. Ratio of cycles (SPEC CPU95).

TABLE III
INFORMATION OF MEM GETWORD.

traditional model(M) new model(I)
average entries 6.2 8.0
average length 10.0 8.0
number of stop reusing 1317472 961174
number of reusing 1992350 2062569

the comparison overhead between CAM and the registers or
the caches (’read’), the write-back overhead (’write’), the D1
and shared D2 cache miss penalties (’D$1’, ’D$2’), and the
register window miss penalty (’win’) respectively.

First, note that the new model (I) reduces the ’read’ of
107.mgrid whose average entries is increased as shown in
Fig.9. This is because the search overhead in some memoiz-
able regions, which have high hit rate of computation reuse,
decreases. However average entries is increased by registering
an instruction region which has numerous inputs. On the other
hand, ’exec’ of 107.mgrid is increased with the new model
(I). This reason is that, more instruction regions are registered
onto MemoTbl, and instruction regions which are reused in
the traditional model may be purged from MemoTbl away.

The new model (I) reduces both of ’read’ and ’exec’ of
147.vortex whose average entries is increased but average
length is decreased. Detailed investigation proves that the
function ’Mem GetWord’ is deeply involved with the result.
The result is shown in TABLE.III. The overhead filter stops
applying computation reuse to the function less frequently, and
the reuse hit rate for the function raises with the new model.

Incidentally, the hardware cost and energy consumption
of the auto-memoization processor is fairly larger than a
multi-core processor, because a ternary CAM is required for

its implementation. However, the auto-memoization processor
can accelerates the programs which have little parallelism.

In conclusion, with most workloads, the reuse hit rate raises
and the execution cycles are reduced with the new model. The
new model (I) improves the maximum speedup ratio to 50.0%,
and the average speedup ratio to 16.4%.

VI. CONCLUSIONS

In this paper, we have proposed input entry integration as
a speed-up method for the traditional auto-memoization pro-
cessor. A mechanism for keeping input tree structure correctly
has also been proposed.

Through an evaluation with SPEC CPU95 suite benchmark
programs, it is found that the new model brings the reduction
of the number of reuse table entries and search overhead. The
new model improves the maximum speedup ratio from 40.5%
to 50.0%, and the average ratio from 10.5% to 16.4%.

One of our future works is the hybrid method which uses
input entry integration and software assist. This method aims at
the efficient registration of inputs/outputs by combining input
entry integration with an existing speed-up technique such as
loop unwinding.

REFERENCES

[1] T. Tsumura, I. Suzuki, Y. Ikeuchi, H. Matsuo, H. Nakashima, and
Y. Nakashima, “Design and evaluation of an auto-memoization proces-
sor,” in Proc. Parallel and Distributed Computing and Networks, Feb.
2007, pp. 245–250.

[2] T. Ikegaya, T. Tsumura, H. Matsuo, and Y. Nakashima, “A Speed-up
Technique for an Auto-Memoization Processor by Collectively Reusing
Continuous Iterations,” in Proc. 1st Int’l. Conf. on Networking and
Computing (ICNC’10), Nov. 2010, pp. 63–70.

[3] P. Norvig, Paradigms of Artificial Intelligence Programming. Morgan
Kaufmann, 1992.

[4] SPARC64-III User’s Guide, HAL Computer Systems/Fujitsu, May 1998.
[5] Reneses Electronics Corporation., Product Overview: R8A20410BG.

