
A Hybrid Model of Speculative Execution and
Scout Threading for Auto-Memoization Processor

Tomoki IKEGAYA∗, Ryosuke ODA∗, Tatsuhiro YAMADA∗,
Tomoaki TSUMURA∗, Hiroshi MATSUO∗ and Yasuhiko NAKASHIMA†

∗Nagoya Institute of Technology, Gokiso, Showa, Nagoya, Japan
Email: camp@matlab.nitech.ac.jp

†Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, Japan
Email: nakashim@is.naist.jp

Abstract—We have proposed an auto-memoization processor
based on computation reuse, and merged it with speculative
multi-threading based on value prediction into a parallel spec-
ulative execution. In the parallel speculative execution model,
speculative cores do not work when the target instruction region
is not suitable for computation reuse. This paper proposes a new
parallel speculative execution model where the idle speculative
cores execute scout threads for reducing cache miss penalties.
The scout thread is based on value prediction, and can handle
an instruction region which accesses the addresses with several
strides. It also can reduce execution cycles by raising computation
reuse ratio. The result of the experiment with SPEC CPU95 FP
suite benchmarks shows that the new hybrid model of parallel
speculative execution and scout threading improves the maximum
speedup from 40.6% to 41.3%, and the average speedup from
15.0% to 19.1%.

I. INTRODUCTION

So far, various speed-up techniques for microprocessors
have been proposed. The performance of microprocessors had
been controlled by the gate latencies, and it had been rela-
tively easy to speed-up microprocessors by transistor scaling.
However, the interconnect delay has been going major, and
it has become difficult to achieve speed-up only by higher
clock frequency. Therefore, speed-up techniques based on ILP
(Instruction-Level Parallelism), such as super-scalar or SIMD
instruction sets, have been counted on.

Recently, multi-core processors equipped with two or more
cores attract a great deal of attention. They are now in wide
use from generic processors for PCs to embedded processors
[1]. The UltraSPARC T2 [2] with eight cores, and the TILE64
[3] with 64 cores is available now, and many core processors
such as the TILE-Gx processor [4] with 100 cores is planned
to be shipped.

A program generally forms a poset, or a lattice. It has
a length along time axis, and has a width (i.e. parallelism)
orthogonal to time axis. Traditional speed-up techniques men-
tioned above are all based on some parallelism in different
granularity. In other words, their approaches aim to increase
performance by shrinking the width of the program lattice.

On the other hand, we have proposed an auto-memoization
processor based on computation reuse [5], [6], [7]. In contrast

to traditional speed-up techniques for microprocessors, memo-
ization or computation reuse tries to shrink the vertical length
of the program lattice. As a speedup technique, memoization
has no relation to parallelism of programs. It depends upon
value locality, especially input values of functions or loops.
Therefore, memoization has a potential for breaking through
the stone wall, against which the speedup techniques based on
ILP have come up.

We also have proposed a model called parallel speculative
execution. It predicts the inputs for a reusable loop iteration,
and additional shadow cores execute the iteration speculatively.
The shadow cores register the results of the speculative exe-
cutions onto the reuse table. If the value prediction for inputs
was correct, the registered outputs can be reused by the main
core and execution time will be reduced.

However, only the loops whose input values change
monotonously can benefit from parallel speculative execution,
and the speculative cores are idle without such loops. In
this paper, we propose a new hybrid model of traditional
parallel speculative execution and scout threading [8] for the
auto-memoization processor. While being idle, the speculative
cores execute scout threads and try to conceal memory access
latencies without disturbing computation reuse.

II. RELATED WORKS

Studies for extracting ILPs with speculative executions
based on value prediction have been proposed by Lipasti et.
al. [9] or Wang et. al. [10] Many speculative multi-threading
(SpMT) models also have been proposed. They have multiple
processors or cores, and run threads speculatively using pre-
dicted value sets. In an SpMT model, a speculative thread will
generally squashed when its input values are overwritten by
main thread.

Roth et. al. [11] has proposed register integration. It is a
mechanism for reusing the results of squashed instructions by
writing back the past register mapping. It is shown that the
model can provide performance improvements of up to 11.5%.

Some hybrid methods of computation reuse and value
prediction have been studied. Wu et. al. [12] have proposed
a speculative multi-threading supported by computation reuse.

tsumura
テキストボックス
This paper is author’s private version of the paper published as follows:Proc. of Int'l. Symp. on System-on-Chip 2011 (SoC2011), pp.22–28Copyright (C) 2011 IEEEDOI: 10.1109/ISSOC.2011.6089225

In the model, the compiler identifies computation region for
reuse or value prediction. At runtime, if a region cannot
be reused, the processor predicts the outputs of the region,
and speculatively execute its following instructions using the
predicted values. Hence, if the value prediction fails, the spec-
ulative executions should be squashed, and it costs additional
hardware and overhead for the squash.

Molina et. al. [13] have proposed a combination model of
speculative thread and non-speculative thread. The execution
results of speculative thread are stored into the FIFO called
a look ahead buffer, and non-speculative thread picks up
instructions from the FIFO. If current source operands and the
stored operands are same, the non-speculative thread reuses the
execution results and skips execution.

In contrast to them, the parallel speculative execution model
we have proposed is a non-symmetric SpMT model based on
the value prediction, and uses computation reuse technique.
Our model has two advantages over [12]. The one is that
there is no need to be assisted by compiler for computation
reuse. The other is that there is no need to squash speculative
executions. Molina’s model [13] is similar to our model.
However, our model can reuse some computation regions
which require memory read as their inputs.

III. RESEARCH BACKGROUND

In this section, we describe about an auto-memoization
processor and a parallel speculative execution model as the
background of our study.

A. Auto-Memoization Processor

Computation reuse is a well-known speed-up technique in
the software field. It is storing the input sequences and the
results of some computation regions, such as functions, for
later reuse and avoiding recomputing them when the current
input sequence matches one of the past input sequences. It
is called memoization [14] to apply computation reuse to
computation regions in programs.

Memoization is originally a programming technique for
speed-up, and brings good results on expensive functions.
However, it requires rewrite of target programs, and the
traditional load-modules or binaries cannot benefit from mem-
oization. Furthermore, the effectiveness of memoization is
influenced much by programming styles. Rewriting programs
using memoization occasionally makes the programs slower.
Memoization costs a certain overhead because it is imple-
mented by software.

On the other hand, the auto-memoization processor, which
we have proposed, makes traditional load-modules faster with-
out any software assist. There is no need to rewrite or recom-
pile target programs. The processor detects functions and loop
iterations as reusable regions dynamically, and memoizes them
automatically.

Fig. 1 shows the two types of memoizable instruction
regions. A region between a callee label and its associated
return instruction is detected as a memoizable function.
A region between a backward branch instruction and its

Fig. 1. Memoizable instruction regions.

Fig. 2. Structure of MemoTbl

branch target is detected as a memoizable loop iteration. This
processor detects these memoizable regions automatically and
memoizes them.

The auto-memoization processor consists of the memoiza-
tion engine, MemoTbl and MemoBuf. The MemoTbl is a set
of tables for storing input/output sequences of past executed
computation regions. The MemoBuf works as a write buffer
for MemoTbl. The brief structure of MemoTbl is shown in
Fig.2.

Entering to a memoizable region, the processor refers to
MemoTbl and compares current input set with former input
sets which are stored in MemoTbl. If the current input set
matches with one of the stored input sets on MemoTbl, the
memoization engine writes back the stored outputs, which are
associated with the input set, to cache and registers. This omits
the execution of the region and reduce the total execution
cycles.

If the current input set does not match with any past
input sets on MemoTbl, the processor stores the inputs and
the outputs of the region into MemoBuf while executing the
region. The input set consists of the register/memory values
which are read in the region; the output set consists of the
values which are written in the region and return value of
function. Reaching the end of the region, the memoization
engine stores the content of MemoBuf into MemoTbl for
future reuse.

The MemoTbl consists of four tables. They are
RF: for start addresses of instruction regions.
RB: for input data sets of instruction regions.
RA: for input address sets of instruction regions.
W1: for output data sets of instruction regions.

The RF, RA, and W1 are implemented with RAM. On
the other hand, the RB is implemented with CAM (Content
Addressable Memory) array, so that input matching can be
done fast by associative search.

Each RF line corresponds to a reusable computation region.
One RF line has two groups of fields, the one is for compu-
tation reuse and the other is for the overhead filter which will
be explained later in III-C. The fields for computation reuse
store whether the region is a function or a loop (F or L), the
start address of the region (addr.), and previous two input sets
for predicting next input set for parallel speculative execution
(prev. inputs). The fields for overhead filter store the execution
cycles of the region (S), its previous reuse overhead (Ovh), and
its hit/miss pattern (hit hist.).

The brief execution mechanism of the auto-memoization
processor is as follows. When the auto-memoization processor
detects a function or a loop iteration, it first searches its start
address through the RF table for deciding the inputs of the
reusable region are stored or not. Then, the input matching
for computation reuse starts.

The processor reads the value of program counter and
registers, and searches their values from the RB. If one of
the RB lines matches, the processor gets its index and reads
RA using the index. The RA line has the address for the input
of the region which should be tested next. Next, the processor
gets input value from the cache or main memory using the
address, searches the input value through the RB again, and
repeats it. If all inputs of a reusable block have matched with
one of the stored input set on the MemoTbl, the processor can
get the output set from W1 by using the index for W1 (called
‘W1 pointer’) stored in the terminal RA entry. The detail of
this execution mechanism is shown in [5], [6].

Meanwhile, accessing MemoTbl causes overhead inevitably.
Through input matching, searching RB, referring RA, and
reading caches cost a certain time. When input matching has
succeeded, outputs of the reusable block should be written
back from W1. This also costs some cycles. We call these
two kinds of overheads ‘reuse overheads.’

B. Parallel Speculative Execution

As a matter of course, memoization can omit the execution
of an instruction region only if the current input values for
the region match completely with the input values which are
used in former execution. Hence, a loop iteration whose inputs
include its iterator variable never benefits from memoization.

Meanwhile, many of microprocessor companies are switch-
ing to multi-core designs today. There is a story going around
that processors with hundreds of cores may be delivered in
another decade [15]. But how we can use these many-core pro-
cessors effectively is still under review between researchers.

Speculative multi-threading (SpMT) is an answer to this
question, but it is not so easy to deal with cross-thread depen-
dence violation and thread squash. We installed some SpMT
cores called SpC (speculative cores) to our auto-memoization
processor. These cores help the unsuitable regions for mem-
oization mentioned above. Fig.3 shows the structure of the

Fig. 3. Structure of a parallel speculative execution.

auto-memoization processor with three SpCs.
Each SpC has its own MemoBuf and a first-level data

cache. The second-level data cache and MemoTbl is shared
between all cores. While the main core executes a memoizable
computation region, SpCs execute the same region using
predicted inputs, and stores the results into MemoTbl. The
inputs are predicted by stride prediction using the last two
input sets stored in RF prev. inputs field. If the input prediction
was correct, the main core can omit intended execution by
reusing the result of SpC. Unlike as other SpMT methods,
even if the input speculation proves to be incorrect later, the
main core need not to pay a cost for any back-out management,
it only fails reuse test and executes the region as usual. This
extension can omit the execution of instruction regions whose
inputs show monotonous increase/decrease. These SpCs not
only omit some executions, but also work as a cache prefetch
technique [16], [17].

C. Overhead Filter

For some reusable regions, reuse overhead may outweigh
the eliminated execution cycles by reuse. This will go for some
regions which have many input values to be tested, and all
tiny regions. Hence, the auto-memoization processor should
estimate the effect of reuse, and avoid memoizing unsuitable
instruction regions. This can reduce useless input matching
and contribute to good performance.

For the reusability estimation, we installed a small logic
onto MemoTbl. This logic estimates how much cycles will
be reduced by memoizing a block, and how much overhead
will cost for its reuse. It is important how to decide which
instruction region should be suitable for parallel speculative
execution. When the results of speculative executions for an
instruction region are frequently reused, the instruction region
is supposed to be suitable. Shift registers, shown as hit hist.
fields in Fig.2, are used for recording these reuse frequency.
The reuse overhead of an instruction region can be calculated
from these frequency values.

Assume that M represents the number of successful reuses
about a certain region for recent T times tries (0 ≤ M ≤ T).
The value of M can be gotten from hit hist. field in RF. With

the execution cycles S of the region, which can be also got
from RF, the reduced cycle can be represented as

M · (S − OvhR − OvhW) (1)

where OvhR and OvhW represent search/writeback overheads
for the region respectively.

OvhR also costs when input matching fails and reuse cannot
be applied. This overhead can be calculated as follows.

(T − M) · OvhR (2)

Here, if the loss (2) is larger than the gain (1), the com-
putation region cannot be suitable for reuse. Now, we define
the difference between (1) and (2) as Gain (3). An additional
small logic calculates whether (3) goes positive or negative,
and decides the suitability of computation regions.

Gain = M · (S − OvhW) − T · OvhR (3)

IV. SCOUT THREADING BY SPECULATIVE CORES

In this section, we will propose a new parallel speculative
execution model, where the SpCs execute scout threads.

A. Outline

On the traditional auto-memoization processor, the overhead
filter described in III-C stops registering input/output values
of an instruction region, if applying computation reuse to the
region will deteriorate the whole performance. The previous
input values for value prediction, which are shown as prev.
inputs in Fig. 2, will also not be updated for such worthless
regions.

The prev. inputs for value prediction are initialized before
the associated region is executed, and updated when the input
values of the region are registered from MemoBuf to MemoTbl
at the end of the region. The value predictor, which is shown
as Input Pred. in Fig. 3, reads these previous input values,
predicts next input values from them by stride prediction, and
passes the predicted values to SpCs. Now, if the overhead filter
prohibits registering input/output values onto MemoTbl, prev.
inputs are not updated and the value predictor cannot generate
correct input values. When value prediction fails, SpCs cannot
issue speculative execution. We call this that SpCs are idle.

In this paper, we propose a new parallel speculative exe-
cution model, in which SpCs execute some scout threads for
cache prefetching when they are idle. This hybrid model of
parallel speculative execution and scout threading can conceal
some memory access latencies of the main core and reduce ex-
ecution cycles. At input-predictable instruction regions, SpCs
issue parallel speculative execution. On the other hand, the
input values are not predictable, the instruction region will not
benefit from memoization, and SpCs execute scout threads.

Scout threading not only reduces some cache miss penalties
but also can raise the hit-rate of computation reuse. The
parallel speculative execution typically brings cache misses
because it precedes the main core execution. The cache miss
delays registering the result of parallel speculative executions

186 C
187 DO 600 I3 =2 ,N−1
188 DO 600 I2 =2 ,N−1
189 DO 600 I1 =2 ,N−1
190 600 R(I1 , I2 , I3) =V(I1 , I2 , I3)
191 > −A(0) ∗ (U(I1 , I2 , I3))
192 > −A(1) ∗ (U(I1 −1, I2 , I3) + U(I1 +1 , I2 , I3)
193 > + U(I1 , I2 −1, I3) + U(I1 , I2 +1 , I3)
194 > + U(I1 , I2 , I3 −1) + U(I1 , I2 , I3 +1))
195 > −A(2) ∗ (U(I1 −1, I2 −1, I3) + U(I1 +1 , I2 −1, I3)
196 > + U(I1 −1, I2 +1 , I3) + U(I1 +1 , I2 +1 , I3)
197 > + U(I1 , I2 −1, I3 −1) + U(I1 , I2 +1 , I3 −1)
198 > + U(I1 , I2 −1, I3 +1) + U(I1 , I2 +1 , I3 +1)
199 > + U(I1 −1, I2 , I3 −1) + U(I1 −1, I2 , I3 +1)
200 > + U(I1 +1 , I2 , I3 −1) + U(I1 +1 , I2 , I3 +1))
201 > −A(3) ∗ (U(I1 −1, I2 −1, I3 −1) + U(I1 +1 , I2 −1, I3 −1)
202 > + U(I1 −1, I2 +1 , I3 −1) + U(I1 +1 , I2 +1 , I3 −1)
203 > + U(I1 −1, I2 −1, I3 +1) + U(I1 +1 , I2 −1, I3 +1)
204 > + U(I1 −1, I2 +1 , I3 +1) + U(I1 +1 , I2 +1 , I3 +1))
205 C

Fig. 4. A part of 107.mgrid program code.

onto MemoTbl, and this leads to the low reuse hit-rate of input-
predictable regions because the result registration by SpCs
may be too late for reuse test by the main core. Now, consider
that there is a loop A, which is not suitable for computation
reuse, and A contains another loop B in it and the loop B is
suitable for reuse. SpCs in the new hybrid model will execute
scout threads for the outer loop A, and will issue parallel
speculative execution for the inner loop B. This can reduce
cache misses at the inner loop B and may raise the reuse hit-
rate for the region B.

Fig. 4 shows a part of the program code of 107.mgrid from
SPEC CPU95 FP benchmark suite. The code calculates R =
V − AU , where R, V , U are 3-dimensional arrays. On the
traditional parallel speculative execution model, the innermost
loop at line 189 benefits from parallel speculative execution
and computation reuse, but the outer two loops at line 187
and 188 do not, because they have too many input values.
In this case, SpCs will execute scout threads for the outer
loops, and it will lead to higher reuse hit-rate for the innermost
loop, because the cache misses with first some iterations of the
innermost loop will reduced by the scout threading.

B. Execution Model

For scout threading, SpCs should be able to execute the
instruction region speculatively. Input values for the spec-
ulative execution are available if value prediction succeeds.
Consequently, higher the hit-rate of value prediction is, more
times SpCs can execute speculatively. As mentioned in III,
value prediction depends on prev inputs fields in RF. However,
on the traditional parallel speculative execution model, when
the overhead filter detects that the Gain shown in (3) is
negative, the processor stops not only applying computation
reuse to the region, but also updating prev inputs fields.

On the new hybrid model, the processor does not stop
updating prev inputs fields even if Gain is negative. This will
increase the opportunities of speculative execution. However,
the result of speculative execution should not to be stored
onto MemoTbl, because Gain is negative and the result of the
instruction region will not be suitable for reuse. Hence, the
processor does not issue parallel speculative execution when
Gain is negative, but executes a kind of scout thread. The
scout thread is composed of load instructions in the instruction
region. This can avoid storing useless entries onto MemoTbl,
and leads to high cache hit-rate without disturbing computation
reuse.

Scout thread includes only load instructions, and it will
consume not so much energy. The targets of scout threading
are the instruction regions, which are memoizable and will not
benefit from computation reuse. Hence, running time of scout
threads will be short and it will cause little additional energy
consumption.

V. IMPLEMENTATION

This section describes an implementation of the new hybrid
model.

A. Switching between Speculative Execution and Scout
Threading

As mentioned in the previous section, prev inputs field
in RF keeps being updated, even if Gain is negative and
the instruction region is not suitable for computation reuse.
Now, the processor needs to select whether SpCs should issue
parallel speculative execution or execute scout threads for the
region. This decision depends on whether the value of Gain is
positive or negative. A 1-bit-width field is installed onto each
RF line, and this field holds the previous result of Gain <> 0
for the associated instruction region. SpC dynamically select
which should be issued, parallel speculative execution or scout
threading, by checking the field.

Through parallel speculative execution, the processor needs
to store input/output values onto MemoBuf and MemoTbl,
and all units in SpCs should work. On the other hand,
through scout threading, only units for prefetching should
work. Consequently, SpCs’ behavior should vary depending
on whether parallel speculative execution or scout threading
is now active. Therefore, 1-bit flag is installed to each SpC,
and it manages the current execution mode of associated SpC.

B. How to Generate Scout Threads

For scout threading, each SpC should pick up load in-
structions from the instruction region, and execute only them.
The auto-memoization processor is based on SPARC-V8, and
it has fixed 32-bit width SPARC ISA, and the opcode has
fixed 8-bit width. The SPARC ISA has many types of load
instructions; five load floating-point instructions, three load
floating-point from alternate space instructions, eight load
integer instructions and eight load integer from alternate space
instructions [18]. However, the opcodes of them are all in

:
1 c1d4 : s e t h i %h i (0 x1d000) , %o1
1 c1d8 : s l l %l1 , 2 , %l 0
1 c1dc : i n c %l 1
1 c1e0 : l d [%o1] , %f3
1 c1e4 : f d i v s %f3 , %f4 , %f2
1 c1e8 : f s t o d %f2 , %f2
1 c1ec : f a d d s %f4 , %f4 , %f4
1 c1 f0 : s t d %f2 , [%fp + −8]
1 c1 f4 : l d d [%fp + −8] , %o2
1 c1 f8 : mov %o3 , %o1
1 c 1 f c : s t %f4 , [%fp + −116]
1 c200 : c a l l 1 c05c
1 c204 : mov %o2 , %o0
1 c208 : cmp %l1 , 0x19
1 c20c : s e t h i %h i (0 x1d000) , %o3
1 c210 : f a d d s %f0 , %f0 , %f0
1 c214 : l d [%o3 + 8] , %f2
1 c218 : f d i v s %f2 , %f0 , %f0
1 c21c : s t %f0 , [%l 2 + %l 0]
1 c220 : b l e 1 c1d4

:

Fig. 5. A part of FFT assembly code.

11xxx0xx format, and they can be easily distinguished from
other instructions.

The processor recognizes all types of load instructions and
save/restore instructions by instruction decoder, and issues
them. In SPARC binaries, there is a save instruction at the
beginning of a function, and a restore instruction at the end of
a function. On the SPARC architectures, register windows are
managed with save/restore instructions. To guarantee correct
function call behavior, the new hybrid model is designed to
issue not only loads but also save and restore.

On the traditional model, nest structures of loops are kept
in MemoBuf and parallel speculative executions are issued
for each nested loop. Fig. 5 shows a part of FFT benchmark
program from Stanford benchmark suite. With this program,
the loop from 1c1d4 to 1c220 will be applied parallel
speculative execution. The function at 1c05c is also applied
parallel speculative execution because it is called at 1c200.

On the other hand, through scout threading on the new
hybrid model, function calls are ignored. For example in
Fig. 5, the input values for the function at 1c05c cannot be
defined correctly without executing from 1c1d4 to 1c200.
Another case is that a branch instruction controls whether a
function is called or not. Consequently, almost all instructions
in an instruction region should be executed for correctly
handling function calls inside the region. This will increase
latencies of scout threads and power consumption by scout
threading.

VI. PERFORMANCE EVALUATION

A. Simulation Environments

We have developed a single-issue SPARC-V8 processor
simulator with auto-memoization structures and SpCs, which

TABLE I
SIMULATION PARAMETERS

MemoBuf 64 kBytes
MemoTbl CAM 128 kBytes
Comparison (register and CAM) 9 cycles/32Bytes
Comparison (Cache and CAM) 10 cycles/32Bytes
Write back (MemoTbl to Reg./Cache) 1 cycle/32Bytes
D1 cache 32 KBytes

line size 32 Bytes
ways 4 ways
latency 2 cycles
miss penalty 10 cycles

D2 cache 2 MBytes
line size 32 Bytes
ways 4 ways
latency 10 cycles
miss penalty 100 cycles

Register windows 4 sets
miss penalty 20 cycles/set

can issue both speculative execution and scout threading.
This section discusses the performance of the new model
proposed in this paper. The simulation parameters are shown
in TABLE I. The cache structure and the instruction latencies
are based on SPARC64 processors [19]. The on-chip CAM
for RB in MemoTbl is modeled on MOSAID DC18288 [20].
The latencies of the CAM are defined on the assumption that
the clock of the processor is 10-times faster than the CAM.

B. Results with SPEC CPU95 FP

We evaluated the hybrid model by parallel speculative
execution and scout threading. Workloads are all benchmark
programs in SPEC CPU95 FP suites and are executed with
‘train’ dataset. All benchmark programs are compiled by gcc
version 3.0.2 with ‘-msupersparc -O2’ options, and linked
statically.

The evaluation results are shown in Fig. 6. We have evalu-
ated following three models,
(M) No-memoization model
(P) Traditional model of parallel speculative execution
(S) Hybrid model parallel speculative execution and scout

threading
and Fig. 6 shows the execution cycles of these models. Each
bar is normalized to the number of executed cycles of (M) the
model without memoization.

The legend in Fig. 6 shows the breakdown items of total
cycles. They represent the executed instruction cycles (‘exec’),
the comparison overhead between CAM and the registers
(‘test(r)’), the comparison overhead between CAM and the
caches (‘test(m)’), the writeback overhead (‘write’), the first-
level and shared second-level data cache miss penalties (‘D$1’,
‘D$2’), and the register window miss penalty (‘window’)
respectively.

As we can see in Fig. 6, (S) the new hybrid model
is rewarded with good results. For 102.swim, 104.hydro2d,
125.turb3d and 146.wave5, D$1 increases and D$2 decreases.
This means that the hit-rate of shared second-level data cache
for the main core increases due to the scout threading by SpCs.
The reduction of cache miss penalty cycles of the second-level

TABLE II
RATIO OF REDUCED D2 CACHE MISS PENALTIES

(M) Traditional (S) Proposed
102.swim 55.1% 96.9%
104.hydro2d 16.7% 56.4%
125.turb3d 12.4% 67.1%
146.wave5 13.0% 42.6%
Ave. of 4 programs 24.3% 65.8%

data cache for these four workloads are shown in TABLE II.
On the other hand, exec, test(r), test(m) and write for these
four workloads do not differ from them of (P). This means
that scout threading does not disturb computation reuse. The
average of reduced cache miss penalty cycles for all SPEC95
FP workloads increases from 15.0% to 19.1%.

For 107.mgrid, 141.apsi and 145.fpppp, we cannot see the
benefit of new hybrid model, because there occurred little
cache misses. However, notice that exec is slightly reduced for
107.mgrid. This means that the hit-rate of computation reuse
increased. As mentioned in IV-A, this should occur in some
inner instruction regions of nested structures. We verified that
the hit-rate of computation reuse for 107.mgrid increases 1.9%
on the new hybrid model.

Now, let us roughly discuss the energy consumption of the
new hybrid model. On the traditional model (P), the running
time of SpCs is about 23% of whole execution cycles. On the
new hybrid model (S), the running time for scout threads is
about 26% besides it. However, for executing scout threads,
not all units in SpC, but only clock and prefetching unit
should work, and this will not lead to much increase of energy
consumption. We estimated the energy consumption of the new
hybrid model, and it is found that the increase is about 13%
over the traditional model (P).

In conclusion, the performance of the new hybrid model (S)
is better than the traditional model (P) as a whole. The model
(S) improves the maximum speedup from 40.6% to 41.3%,
and the average from 15.0% to 19.1%.

VII. CONCLUSIONS

In this paper, we have proposed a hybrid model of traditional
parallel speculative execution and scout threading for auto-
memoization processor. In the model, idle SpCs execute scout
threads and conceal some of memory access latencies without
disturbing computation reuse. This prefetching sometimes also
raises the hit-rate of computation reuse.

Through an evaluation with SPEC CPU95 FP suite bench-
mark programs, it is found that the new hybrid model improves
the maximum speedup ratio from 40.6% to 41.3%, and the
average speedup ratio from 15.0% to 19.1%. The hit-rate of
computation reuse also rises a little with 107.mgrid.

One of the our future works is merging this model with
other low-overhead models such as [6] we had proposed.

ACKNOWLEDGMENT

This research was partially supported by the Kayamori
Foundation of Informational Science Advancement.

10
1.

to
m

ca
tv

10
2.

sw
im

10
3.

su
2c

or

10
4.

hy
dr

o2
d

10
7.

m
gr

id

11
0.

ap
pl

u

12
5.

tu
rb

3d

14
1.

ap
si

14
5.

fp
pp

14
6.

w
av

e5

(M) No Computation Reuse

(P) Parallel Early Computation (n = 1)

(S) Switching Model exec test(r) test(m) write

D$1 D$2 window

exec test(r) test(m) write

D$1 D$2 window
R

at
io

 o
f

cy
cl

es

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fig. 6. Ratio of execution cycles (SPEC CPU95 FP).

REFERENCES

[1] ARM Ltd, The ARM Cortex-A9 Processors, Sep 2007.
[2] M. Shah, J. Barreh, J. Brooks, R. Golla, G. Grohoski, N. Gura,

R. Hetherington, P. Jordan, M. Luttrell, C. Olson, B. Saha, D. Sheahan,
L. Spracklen, and A. Wynn, “UltraSPARC T2: A Highly-Threaded,
Power-Efficient, SPARC SOC,” A-SSCC 2007, Tech. Rep., 2007.

[3] Tilera Corporation, Product Brief: TILE64 Processor, 2007.
[4] ——, TILE-Gx Processor Family Product Brief, 2009.
[5] T. Tsumura, I. Suzuki, Y. Ikeuchi, H. Matsuo, H. Nakashima, and

Y. Nakashima, “Design and evaluation of an auto-memoization proces-
sor,” in Proc. Parallel and Distributed Computing and Networks, Feb.
2007, pp. 245–250.

[6] Y. Kamiya, T. Tsumura, H. Matsuo, and Y. Nakashima, “A Speculative
Technique for Auto-Memoization Processor with Multithreading,” in
Proc. 10th Int’l. Conf. on Parallel and Distributed Computing, Applica-
tions and Technologies (PDCAT’09), Dec. 2009, pp. 160–166.

[7] T. Ikegaya, T. Tsumura, H. Matsuo, and Y. Nakashima, “A Speed-up
Technique for an Auto-Memoization Processor by Collectively Reusing
Continuous Iterations,” in Proc. 1st Int’l. Conf. on Networking and
Computing (ICNC’10), Nov. 2010, pp. 63–70.

[8] S. Chaudhry, P. Caprioli, S. Yip, and M. Tremblay, “High-Performance
Throughput Computing,” IEEE Micro, vol. 25, pp. 32–45, May. 2005.

[9] M. H. Lipasti and J. P. Shen, “Exceeding the dataflow limit via value
prediction,” in 29th MICRO, Dec. 1996, pp. 226–237.

[10] K. Wang and M. Franklin, “Highly accurate data value prediction using
hybrid predictors,” in 30th MICRO, Dec. 1997, pp. 281–290.

[11] A. Roth and G. S. Sohi, “Register integration: A simple and efficient
implementation of squash reuse,” in 33rd MICRO, Dec. 2000.

[12] Y. Wu, D. Chen, and J. Fang, “Better exploration of region-level value
locality with integrated computation reuse and value prediction,” in 28th
ISCA, 2001, pp. 98–108.

[13] C. Molina, A. González, and J. Tubella, “Trace-level speculative multi-
threaded architecture,” in ICCD, 2002.

[14] P. Norvig, Paradigms of Artificial Intelligence Programming. Morgan
Kaufmann, 1992.

[15] S. Y. Borkar, P. Dubey, K. C. Kahn, D. J. Kuck, H. Mulder, S. S.
Pawlowski, and J. R. Rattner, “Platform 2015: Intel processor and
platform evolution for the next decade,” Intel Corp., White Paper, 2005.

[16] J. A. Brown, H. Wang, G. Chrysos, P. H. Wang, and J. P. Shen, “Spec-
ulative precomputation on chip multiprocessors,” in Proc. of the 6th
Workshop on Multithreaded Execution, Architecture, and Compilation
(METAC-6), 2002.

[17] I. Ganusov and M. Burtscher, “Future execution: A hardware prefetching
technique for chip multiprocessors,” in Proc. Int’l Conf. on Parallel
Architectures and Compilation Techniques (PACT’05), 2005, pp. 350–
360.

[18] D. L. Weaver and T. Germond, Eds., The SPARC Architecture Manual
Version 9. Prentice-Hall, Inc., 1994.

[19] SPARC64-III User’s Guide, HAL Computer Systems/Fujitsu, May 1998.
[20] MOSAID Technologies Inc., Feature Sheet: MOSAID Class-IC

DC18288, 1st ed., Feb. 2003.

