
Proposition of Criteria for Aborting Transaction
based on Log Data Size in LogTM

Hiroki ASAI∗, Tomoaki TSUMURA∗ and Hiroshi MATSUO∗

∗Nagoya Institute of Technology
Gokiso, Showa, Nagoya, Japan

Email: camp@matlab.nitech.ac.jp

Abstract—Lock-based synchronization techniques are com-
monly used in parallel programming on multi-core processors.
However, lock can cause deadlocks and poor scalabilities. Hence,
LogTM has been proposed and studied for lock-free synchro-
nization. LogTM is a kind of hardware transactional memory.
In LogTM, transactions are executed speculatively to ensure
serializability and atomicity. LogTM stores original values in a
log before it is modified by a transaction. If a transaction accesses
a shared datum which has been accessed by another transaction
running in parallel, LogTM detects it as conflict and restores
all data from the associated log and restarts the transaction.
This is called aborting. On abort, the costs for restoring data
from a log increases in proportion to the data size on the log.
However, LogTM selects which transaction should be aborted by
their initiated time. Hence, if conflicts occur frequently, it may
degrades the performance. This paper proposes a criterion for
selecting which transaction should be aborted taking account of
data size in each log. In addition, another criterion which takes
account of degree of conflict is also proposed. The result of the
experiment with SPLASH-2 benchmark suite programs shows
that the proposed methods improve the performance 2.7% in
maximum.

I. INTRODUCTION

As electric power consumption and calorific power are
increasing, and semiconductor devices keep downscaling, it
becomes difficult to raise clock frequencies of microproces-
sors.

In response to this distress, multi-core processors now at-
tract a great deal of attention. Multi-core processors consist of
several independent cores on a chip. On multi-core processors,
multiple threads run in parallel for speedup. For this multi-
threaded parallel execution, shared memory programmings are
commonly used. In shared memory programmings, indepen-
dent cores share a single address space. Hence, an exclusive
control is required. Lock-based synchronization methods have
been commonly used for shared memory parallel program-
mings. However, lock-based method can cause deadlocks, and
it leads to poor scalability and high complexity. Meanwhile,
LogTM[1] is proposed as a lock-free synchronization mecha-
nism.

LogTM is a kind of Hardware Transactional Memory. On a
system with a transactional memory, transactions are executed
speculatively to ensure the serializability and atomicity. A
transaction is an instruction sequence which includes a certain
critical section. LogTM stores original values into a log

before they are modified by a transaction. When a transaction
accesses a shared data which other transactions running in
parallel have already accessed, it will be detected as a conflict.
Then, LogTM aborts the transaction, restores all the original
values from the log to the caches or the memory, and restarts
the transaction.

On abort, restoring original values from the log costs in
proportion to the stored data size on the log. However, the
traditional LogTM selects the victim transaction which should
be aborted only by comparing the timestamps of when the
transactions started. Therefore, LogTM may abort the transac-
tion which will cost more cycles for being aborted. If conflicts
occur frequently, this may deteriorate the total performance.

Furthermore, when a lot of threads are executed in parallel,
one transaction can block many other transactions. Such a
transaction should not be aborted, because the transaction
conflicted with many other transactions may cause a lot of
conflict again after being aborted and restarted.

This paper describes two criteria for deciding which trans-
action should be aborted considering to the data size on the log
and the number of transactions conflicted with. The methods
with these criteria dynamically select a victim transaction
by taking all of the data size on the log, the ages of the
transactions and the number of transaction conflicted into
account.

II. RESEARCH BACKGROUND

A. Transactional Memory

Shared memory programmings are common for parallel
programmings on multi-core processors. In shared memory
programmings, several independent cores share a single ad-
dress space and the shared resource must be kept synchronized
between threads. Lock-based synchronization has been com-
monly used for shared memory parallel programming. How-
ever, lock-based methods can cause deadlocks, poor scalability
and higher complexity. When we use a lock, we must consider
the granularity of transactions. With a coarse granularity,
lock mechanism is easy to use for programmers, but it will
reduce the parallelism as the number of threads increases.
On the other hand, with a fine granularity, lock mechanism
increases parallelism but there should be much difficulty in its
programming.

tsumura
テキストボックス
This paper is author’s private version of the paper published as follows:
Proc. 1st Int'l. Conf. on Networking and Computing (ICNC'10), pp.95–103
Copyright (C) 2010 IEEE
DOI: 10.1109/IC-NC.2010.51
 



Meanwhile, Transactional Memory[2] is proposed for
lock-free synchronization. Transactional memory is an applica-
tion of transaction mechanism which is originally for database
consistency to shared memory synchronization. On the trans-
actional memory mechanism, a transaction is a instruction
sequence which covers a critical section, and the transaction
satisfies the following properties:

Serializability
The results of multiple transactions must not depend
on whether they have been executed parallely or
serially.

Atomicity
Transactions must be guaranteed not to be executed
partly, but either to be completed or to be left
unexecuted.

To ensure atomicity and serializability described above,
transactional memory keeps track of memory accesses check-
ing whether each accessed datum has been accessed yet by
another transaction or not. When a transaction accesses the
same memory address which has been accessed by another
transaction, transactional memory detects it as a conflict
between the transactions. To solve the conflict, transactional
memory selects a victim transaction among the two transac-
tions concerned, discards all updates by the victim transaction
and restarts it. On the other hand, if there occurs no conflict
through a transaction, transactional memory make all updates
by the transaction visible to other threads (called commit).

As far as there is no conflict between transactions, trans-
actions can be concurrently executed under the transactional
memory without any blocking. Moreover, it is easy to use
because there needs not to consider granularities.

B. LogTM

LogTM is a kind of transactional memory implemented with
specialized hardware support. Fig. 1 shows the structure of
LogTM. Each core has two levels of private caches and a
cache controller, and shares a memory with other cores.

1) Version Management:
On LogTM system, transactions are executed speculatively.

Since the results of the transactions may be discarded, through
the speculative executions, transactions must save data in per-
thread log space on cachable virtual memory before the data
was updated on the shared memory. This is called version
management. LogTM appends the current value and its virtual
address to the log when a store operation occurs within the
transaction.

On abort, the transaction restores data on its log to the
shared memory. After then, the transaction can restart. If the
log has a lot of entries (i.e. pairs of value and address), the
restore process will costs many cycles and the restart will be
delayed. On the other hand, on commit, the transaction should
only discard all the data on its log.

Now, let us see how the version management works. In
Fig. 2, the Thread executes a transaction and has its Log
and a shared Memory.

Fig. 1. Structure of LogTM.

Fig. 2. Management of data versions.

First, the shared memory has a value 10 at 0x100 (a). When
the thread issues the instruction ST 0x100,15, the value 15
and the address 0x100 are being stored into shared memory,
and the previous value 10 and the address 0x100 which will
be overwritten by the instruction are stored into the log (b).

If the speculative execution of the transaction succeeds,
commit is required. On LogTM, all updates have already been
stored in the memory, and the thread should only discards all
backups in the log (c). On the other hand, if the speculative
execution fails, the thread must abort to discard all updates
and restart the transaction. This can be done by restoring the
backup values in the log to the memory and discarding the
log contents (d). The register values also should be restored
as they had been as the begging of the transaction.

As a result, the memory access overhead increases in
proportion to the log data size which will be written back
on abort, but there occurs no memory access on commit. This
behavior of LogTM is designed considering the fact that any



transaction will commit in the end. By making indispensable
commits faster, LogTM tries to improve total performance.
When abort is rare, its overhead does not matter.

2) Conflict Detection:
If a transaction accesses a shared data which another trans-

action running in parallel has accessed, LogTM detects it as
a conflict between the transactions (conflict detection). To
detect a conflict, LogTM keeps track of cache accesses by
other transactions. Each cache block has read bit (R-bit)
and write bit (W-bit). When a read access occurs through
a transaction, LogTM sets the R-bit for the cache block. As
well as R-bit, W-bit is set when a write access occurs.

To notify the conflict to other transactions, LogTM ex-
tends cache coherence protocol which was a combination of
directory[3] and Illinois protocol[4]. To keep caches coherent,
the states of cache blocks must be updated. When changing
the state, R-bit and W-bit of the cache block will be tested on
LogTM system. If one of the bits is set, the transaction finds
that there may be a conflict with another transaction. There
are following three cases that cause conflict:

read-after-write
The case where a transaction reads the value which
has been written by another transaction. The transac-
tion may access the value before another transaction
commits.

write-after-read
The case where a transaction writes the value which
has been read by another transaction. That is, through
an execution of an transaction, another transaction
may change the value which is used by the former
transaction.

write-after-write
The case where a transaction writes the value which
has been written by another transaction. As well as
write-after-read, a transaction may change the value
before another transaction commits.

If there is no conflict, the transaction receiving a coherence
request from another transaction sends back an ack reply. On
the other hand, if a conflict is detected, a nack reply will be
sent back. If the sender of the request receives a nack, it knows
there is a conflict with the nack sender, and waits for the nack
sender to commit. This is called stall. The stalled transaction
will keep reissueing the same coherence request. If the other
transaction commits and is completed, the stalled transaction
finally receives an ack reply.

Now, we explain the process of finding a conflict between
transactions. In Fig. 3, the transaction trans1 is executed
speculatively in the thread Thread1. Likewise, trans2 is
executed speculatively in Thread2.

First, let us see the case that no conflict occurs (a). trans1
sends a coherence request to trans2 before trans1 issues
LD 0x100 instruction. At time t1, trans1 can issue the
load instruction because trans2 has not accessed the address
0x100 yet.

After that, trans2 sends a coherence request to trans1
before trans2 issues LD 0x100 at t2. Actually, the co-

Fig. 3. Conflict detection.

herence request is sent not to trans1 but to the directory
associated with trans1. Then, trans1 knows that trans2
is going to access at the address 0x100 by receiving the
request. In this case, trans1 does not detect a conflict
because this memory access is read after read. Therefore,
trans2 receives an ack reply and can load value from
0x100.

Next, let us see the case that a conflict occurs (b). As well as
the case (a), trans1 issues the instruction LD 0x100. After
that, trans2 sends the coherence request request1 at t3
before trans2 issues ST 0x100. Now, trans1 detects a
conflict because this access is a write after read. Therefore,
trans1 sends the nack reply nack1 to trans2 at t4 to
notify a conflict. Receiving nack1, trans2 stalls at t5, and
keeps sending requests (request2 and request3) until
trans1 commits. When trans1 commits, trans2 receives
an ack reply from trans1 at t6. Therefore, trans2 finds
that it is now able to access the address 0x100 and returns
from stall at t7.

If a lot of transactions stall, there comes some risks of their
deadlocking. For example, assume that a transaction trans1
sends a nack to another transaction trans2 and trans2
sends a nack to trans1. This makes a deadlock because
trans1 waits for trans2’s commit and vice versa. To
dissolve this deadlock, LogTM should abort either transaction.
On abort, the traditional LogTM selects the transaction which
has started later than the other as the victim, because the ear-
lier transaction should have possibly accessed more memory
values than the other. Hence, it is regarded that the earlier
transaction should be committed as soon as possible to avoid
further conflicts.

For detecting deadlocks, LogTM uses possible cycle flag of
TLR’s distributed timestamp method[5]. Each transaction has
its own possible cycle flag, and sets the flag when it sends a
nack reply to another elder transaction. Then, if the transaction
whose possible cycle has been set receives a nack reply from
another transaction, the transaction detects a deadlock and is
aborted.

Now, let us see an example of detecting a conflict and



Fig. 4. Conflict Resolution.

restarting a transaction. In Fig. 4, the transaction trans1 is
initiated in Thread1 before the transaction trans2 starts
in Thread2. When an address in the shared memory is
accessed, LogTM first checks whether the R/W-bit for the
cache block is set or not through the cache coherence protocol.
If the R- or W-bit is set and the memory access is one of
the read-after-write, write-after-read or write-after-write, a
conflict is detected.

The transaction trans1 executes ST 0x100 before
trans2 issues ST 0x200. After that, trans1 sends a co-
herence request request1 to trans2 at t1 before trans1
executes LD 0x200. Now, trans2 detects a conflict be-
tween trans1 and trans2 because trans2 already has
stored into 0x200. So, trans2 sends a nack reply nack1
to trans1 for notifying a conflict and the possible cycle of
trans2 is set at t2. At t3, trans1 receives nack1 and it
stalls. On the other hand, trans2 can execute instructions
ST 0x300 and ST 0x400 because they do not conflict
with other transactions. After that, when trans1 receives the
coherence request request2 about the address 0x100 from
trans2 at t4, trans1 detects a conflict with trans2 and
sends nack2 to trans2 at t5. In this case, trans2 aborts
since trans2 has been initiated after trans1 and has its
possible cycle flag set.

If trans2 does not abort in this example, trans1
will wait for trans2’s commit and trans2 will wait for
trans1’s commit. This is a deadlock between trans1 and
trans2. Hence, one of the transactions must be aborted to
dissolve this conflict. After trans2 is aborted, it returns to
the checkpoint of its beginning and restarts at t6. After the
restart, if trans2 receives a coherent request from trans1,
it replies back an ack this time to notify the conflict has been
dissolved. Then, trans1 can continue.

III. PROPOSITION OF NEW LOGTM MODELS

In this section, we point out a drawback of LogTM, and
propose two new models which will improve total performance
of LogTM by selecting a victim transaction based on log data
size.

A. Problem with LogTM

One of the drawbacks of LogTM is the high cost of
transaction abort. The cost appears when a transaction writes
back the backup values from the log to the shared memory
for restoring the memory state as the transaction started. This
write back cost increases in proportion to the number of entries
in the log (log data size). Whenever a transaction issues a
store operation, the log data size increases. In general, memory
access latency is expensive. As a result, the more log data
size grows, the more write back cost increases. Therefore, the
performance may be reduced when a conflict and abort occur
frequently.

In Fig. 4, either transaction has some entries in its log,
and its number of entries is same as the number of store
operations which have been issued in the transaction. In this
case, trans1 has one entry in the log and trans2 has
three. Therefore, if trans2 is aborted, three blocks have to
be restored into the memory. On the other hand, if trans1
is aborted, restoring only one block is enough. As a result,
trans1 may be more suitable for a victim to be aborted rather
than trans2, although trans1 has been initiated before
trans2.

B. Selecting Victim Transaction based on Log Data Size

First, we propose a new LogTM model for reducing the
overheads by selecting a victim transaction with a certain
criterion. The criterion considers the log data size, since
aborting cost depends on how many data are stored in the
log.

Of course, aborting the transaction which has smaller log
data size does not always derive good performance. As we
have seen in II-B, the transaction which has been initiated
earlier should be committed for preventing frequent conflicts.
The age of a transaction is also an important criterion. Both of
the log data size and the transaction age should be considered.

However, a traditional LogTM only considers the transac-
tion age. This can lead to the situation where a transaction,
whose aborting overhead is expensive because of its huge log
data size, is selected as a victim. Essentially, the transaction
which costs higher aborting cost should be a victim transac-
tion. Hence, we introduce a new criterion for selecting a victim
transaction considering both the log data size and the age of
the transactions.

Constructing a new criterion, how much cycles will be
overhead or how much cycles will come to nothing through an
abort should be considered. The cycles consist of two factors.
The one is the how many log data should be written back to
the shared memory. The other is how much cycles does it take
until the aborted transaction replays from the beginning and
comes back to the state just before the abort. Letting L(tr)



Fig. 5. Conflict resolution based on log data size.

be the former and T (tr) be the latter where tr is transaction
ID, the new criterion which represents the total cycle overhead
can be calculated as follows:

C(tr) = k · L(tr) + T (tr) (1)

where k is the system-specific constant cost for writing one
log entry back to the caches or the shared memory.

Now, we show an example where the new LogTM model
selects the transaction which has lower cost. In Fig. 5,
trans2 receives a nack nack2 from trans1 at t1 while
trans2’s possible cycle flag is set. Therefore, trans2
detects a deadlock at t2. Then, C(tr) is calculated in both
transactions trans1 and trans2.

Now, assume that the value of k the write back cycle cost for
one log entry is 20. In trans1, since log data size is L(1) = 1
and its age is T (1) = t1− s1 = 12, C(1) = 20 · 1 + 12 = 32.
Likewise, C(2) = 70 since L(2) = 3 and T (2) = 10.

At t1, trans2 compares C(1) and C(2). In this case,
C(1) < C(2) and trans1 will be selected as a victim. In this
example, the difference of the ages is small and is assumed to
affect total performance little. On the other hand, the difference
of log data size or its write back overhead is relatively large
and is assumed as a dominant factor. In other words, the large
log data size of trans2 outweigh its youngerness. As shown
above, the new criterion C(tr) can consider both the abort
overhead and transaction age, and unify their effects.

C. Another Model Considering Conflict Chains

When a lot of threads are being executed in parallel, a
lot of transactions may be blocked by one transaction. Now,
we show another example Fig. 6 where a transaction blocks
multiple other transactions. Each transaction is executed in
other threads in parallel.

Here are four transactions. First, trans3 detects a conflict
with trans4 at t1, and sends a nack nack1 to trans4

Fig. 6. An example of conflict chains.

blocking trans4. After that, trans2 blocks trans3 at t2.
Now, as a result, trans4 is indirectly blocked by trans2
through trans3.

At t3, trans1 detects a deadlock with trans2, so
either trans1 or trans2 must be aborted. The number of
transactions who are blocked by a transaction should affect
total performance, and we propose another new criterion
for selecting a victim transaction being aborted. Let D(tr)
the degree of conflict of the transaction tr, or how many
transactions are blocked by the transaction tr. Now, D(1) = 1
since only trans2 is blocked by trans1. On the other
hand, D(2) = 3 since trans1, trans3 and trans4 are
essentially blocked by trans2.

A transaction tr with larger D(tr) should not be aborted but
should be continued, because after restarting the transaction,
it may cause many conflicts again. Hence, we propose another
new criterion which can consider the conflict degree D(tr) by
extending Formula (1). The new criterion, the transaction tr’s
priority P (tr) of being continued, can be defined as follows:

P (tr) = wC · C(tr) + wD · D(tr) (2)
= wC · (k · L(tr) + T (tr)) + wD · D(tr)

bacause a transaction with small C(tr) and small D(tr) should
be aborted.

Since the estimated overhead cycles C(tr) and the conflict
degree D(tr) have different dimensions, each factor should
have its own coefficient (or weight). The constant wC is the
weight for C(tr) and wD is for D(tr). These values should
be defined appropriately.

IV. IMPLEMENTATION

In this section, how to implement the two new LogTM
models shown in the previous section will be explained.

A. Hardware Extension

For considering L(tr), the number of log entries or the log
data size, as a factor of the new criteria, the hardware should
keep track of L(tr) of each transaction. We have installed
counters on the cache controllers. This is shown in Fig. 7. Each



Fig. 7. Structure of Proposed LogTM.

thread has its own conter, and a transaction in a thread can
refer its counter for calculating C(tr) defined by Formula (1).

To get a conflict degree D(tr), a transaction must keep
how many other transactions it blocks. For this purpose, we
introduce conflict bits and have installed a register for storing
it called conflict bits register into the each cache controller.
If the number of threads running in parallel is n, the conflict
bits has n-bit width. The m-th bit in CB(i) the i-th thread’s
conflict bits is associated with the m-th thread, and the bit
represents whether the m-th thread is blocked by the i-th or
not. The CB(i) is initialized with 0i−110n−i−1 and stored
into the conflict bits Register of i-th thread. When the m-th
thread is blocked by the i-th, the m-th bit in CB(i) is set to
1. Then, a transaction can know which other transactions are
blocking it by checking its conflict bits register. The value of
D(tr) is the number of 1’s in the CB(tr).

We have also installed a register called previous conflict
bits register into the each cache controller. It temporarily
stores the previous value of conflict bits register. When a
deadlock occurs, the values of previous conflict bits are used
for comparing conflict degrees before the deadlock.

B. Message Extension

1) Carrying Log Data Size:
For comparing log data sizes between two transactions, a

transaction needs to know not only its own log data size
but also the log data size of the other transaction. Therefore,
information about log data size should be exchanged between
threads by some messages. Hence, we have extend nack
messages to include information about log data size.

Now, let us see how the first new model described in III-B
works with an example shown in Fig. 8. Both transactions
trans1 and trans2 issue same instruction sequences as in
an example of Fig. 4. The transaction trans1 sends its cur-
rent log data size L(1) = 2 through the nack message nack2
to trans2. At t3, trans2 receives nack2 and detects a
deadlock. Then, trans2 calculates C(1) and C(2) defined

Fig. 8. Conflict Resolution of Proposed LogTM.

by Formula (1). Since C(1) < C(2), aborting trans1 will
be cheaper than trans2 and trans1 is selected as a victim
transaction.

In this case, the judging thread and the victim thread are
different. Hence, trans2 should tell trans1 that trans1
is selected as a victim. Therefore, a new message abortreq,
which requests its receiver to be aborted, is introduced. In
this example, trans2 sends an abortreq to trans1 and the
receiver trans1 is aborted at t5.

Now, with a traditional architecture of LogTM, a transaction
can be aborted only when it receives nack message from
another transaction. Therefore, we have installed a flag called
abort bit into each cache controller for managing whether a
transaction has received an abortreq or not. The abort bit is
set when a transaction receives an abortreq message. In the
example of Fig. 8, trans1’s abort bit is set at t4. After that,
when trans1 receives a nack reply from other transaction,
it is aborted at t5. As a result, a transaction is aborted not as
soon as it receives an abortreq message.

With the traditional LogTM model, the transaction whose
possible cycle flag is set is always selected as a victim.
However, with our new model, it is not always true. Hence, a
transaction, which only has rejected an access request from
another transaction, may incidentally receives an abortreq
message although the transaction is not stalled.

To avoid such a situation, we have also installed a flag called
stall bit into each cache controller as shown in Fig. 7 for
managing whether the transaction is stalled or not. The stall bit
is set when the transaction becomes stalled and is reset when
the transaction continues. Each transaction sends its current
stall bit with nack message to other transactions. If the stall
bit in the received nack message is not set, the receiver does
not send abortreq back.

In the example of Fig. 8, trans1 stalles when it receives
nack1 and sets its stall bit at t1. After a while, trans1
sends nack2 with its log data size and its state of stall bit



Fig. 9. Exchange conflict bits.

to trans2. Then, trans2 can select trans1 as a victim
because the received stall bit is set, and sends an abortreq to
trans1.

2) Carring conflict bits:
As well as the log data size, the conflict bits should be

carried by messages between transactions. Now, let us see
how the second new model described in III-C works with an
example shown in Fig. 9.

When a transaction starts, its conflict bits are initialized as
described in IV-A. For example, the conflict bits of trans1,
..., trans4 in Fig. 9 are initialized with 0001, 0010, 0100
and 1000 respectively.

Each transaction sends request messages with its current
conflict bits. At t1, trans4 sends request1 to trans3
with its conflict bits 1000. If a transaction which receives a
request message detects a conflict with the sender, the receiver
stalls the sender and logically adds the received conflict bits to
its own conflict bits. In this example, trans3 adds received
1000 to its own 0100 and gets 1100 after sending nack1 to
trans4. As a result, in the trans3’s conflict bits, the bit
associated with trans4 is set. This represents that trans4
is blocked by trans3.

The previous conflict bits are carried not by request mes-
sages but by nack messages, because nack receivers should
calculate transaction priorities P (tr) using Formula (2) when
a conflict occurs. The previous conflict bits carried by a nack
message should have the value of conflict bits before the
conflict.

At t3 in Fig. 9, trans2 receives request2 with
trans3’s current conflict bits 1100, sends nack2 back to
trans3, and gets new conflict bits 1110 = 0010 ∨ 1100.
Now, not only the bit associated with trans3 but also the
bit associated with trans4 is set in 1110. This means that
trans2 blocks not only trans3 but also blocks trans4
indirectly.

TABLE I
SIMULATION PARAMETERS

Processor
number of cores 32 cores
frequency 1 GHz
issue width 1
issue order in-order
IPC (non-memory) 1

D1 cache
size 16 KBytes
ways 4 ways
latency 1 cycle

D2 cache
size 4 MBytes
ways 4 ways
latency 12 cycles

Memory
size 4 GBytes
latency 80 cycles

Interconnect Network
topology Hierarchical switching topology
link latency 14 cycles

LogTM
Write back latency per log entry 20 cycles

At t4, there occurs a deadlock between trans1 and
trans2, and one of them should be aborted. Hence, the con-
flict degrees of both transactions are required. Now, trans1
has 1111 as its conflict bits, but they do not represent
trans1’s conflict degree correctly because trans1 does not
block trans3 and trans4. Hence, trans1 should send its
previous conflict bits 0001 to trans2. As a result, D(1) is
1 and D(2) is 3 because trans2’s previous conflict bits are
1110.

If P (1) > P (2) and after selecting trans2 as a victim,
the conflict bits of trans1 should be modified. The bits
associated with trans2 and other transactions, which are
blocked by trans2, should be cleared. Hence, trans2
sends its correct conflict bits 1110 by modify bits message to
trans1 for notifying which bits should be cleard. As a result,
trans1 is released from the dependency with trans2.

V. PERFORMANCE EVALUATION

A. Simulation Environments

We used a full-system execution-driven functional simulator
Virtutech Simics[6] in conjunction with customized mem-
ory models built on Wisconsin GEMS (version 1.4)[7], for
evaluation. Simics provides a SPARC-V9 architecture and
boots Solaris 10. GEMS provides a detailed timing model
for the memory subsystem. This system has 32 processors,
each with two levels of private caches. An Illinois directory
protocol maintains cache coherence over a high-bandwidth
switched interconnect. This section discusses the performance
of two proposed LogTM models. The simulation parameters
are shown in TABLE I.

B. Results with SPLASH-2

We evaluated our new two LogTM models proposed in
this paper. Workloads are three benchmark programs from
SPLASH-2[8] suits and are executed with inputs shown in



TABLE II
SPLASH-2 BENCHMARK PROGRAMS AND THEIR INPUTS

Benchmark Input
Barnes 512 bodies
Raytrace small image (teapot)
Cholesky 14

Fig. 10. Ratio of Execution Cycles

TABLE II. Each workload was executed with 31 threads,
because one of the 32 cores should be a default core which
cannot be used for user programs.

For the simulation of multithreading on a full-system sim-
ulator, the variability performance[9] must be considered.
Hence, we tried 10 times on each benchmarks, and measured
95% confidence interval.

The evaluation results are shown in Fig. 10. We have
evaluated following six models,

(T) Traditional LogTM
(C) Proposed model using C(tr) described in III-B
(P1,1) Proposed model using P (tr) described in III-C

with (wC , wD) = (1, 1)
(P1,10) with (wC , wD) = (1, 10)
(P1,100) with (wC , wD) = (1, 100)
(P1,1000) with (wC , wD) = (1, 1000).
Fig. 10 shows the normalized execution cycles of each

model and the confidence intervals are illustrated as error bars.
Each bar is normalized to the number of executed cycles of
Traditional LogTM (T). We have used 1 for wC , and 1, 10,
100, and 1000 for wD.

As we can see in Fig. 10, the proposed model (C) gets the
average speed up 1.1% and the maximum speedup 1.3% with
Barnes. TABLE III shows the difference of log data size in
average between deadlocked transactions with the traditional
LogTM model (T). As we can see, the differences of log data
size with Raytrace and Cholesky are very small and they will
not affect much the transaction selection for aborting. On the
other hand, for Barnes, the difference considerably large.

TABLE IV shows the average of the number of entries

TABLE III
DIFFERENCE OF LOG DATA SIZE BETWEEN DEADLOCKED

TRANSACTIONS IN (T)

Barnes Raytrace Cholesky
Max. 44.7 1 2
Min. 0 0 0
Ave. 6.71 0.01 0.48

TABLE IV
NUMBER OF LOG ENTRIES WRITTEN BACK PER ABORT

Barnes Raytrace Cholesky
(T) 5.58 1 1.01
(C) 4.83 1 1.01

which have been written back at aborts, and shows how much
the average is reduced with the proposed model (C). As we
can see, the number of entries with Raytrace or Cholesky is not
reduced because there are not so much log entry differences
originally with (T) as shown in TABLE III. However, the
number of entries is reduced about 13% with Barnes. This
result meets the purpose of the proposed new criterion C(tr),
and should contribute to the good performance shown in
Fig. 10.

Next, let us see the result of (P) models. There are four
models with different weight parameter set (wC , wD). TA-
BLE V shows the average of the number of stalls occured in
transactions with the traditional model (T) and the proposed
model (P). With almost all the (P) models, the number of
stalls is reduced . The performance is improved 2.7% in
maximum. The criterion P (tr) proposed in III-C considers
how many transactions are blocked by the transaction tr. The
results shown in TABLE V meets the purpose of P (tr). A
transaction with large conflict degree D(tr) blocks many other
transactions and it should not be aborted because it may block
many transactions again after being aborted and restarted. The
proposed model (P) tends to select the transaction with small
D(tr) as the victim transaction which should be aborted. This
should lead to the small number of stalls in total.

Now, as we can find in Fig. 10, the value of parameter
set (wC , wD) will rather affect the performance. Hence, how
to define the parameter set appropriately should be very
important. Finding an algorithm for defining the parameter
set is left for our future work.

VI. RELATED WORKS

Our proposition selects a victim transaction by considering
the data size on the log, the ages of the transaction and
the degree of conflict. Meanwhile, other various speedup
techniques for LogTM have been proposed.

FASTM[10] extends the cache coherence protocol for reduc-
ing the abort overhead itself. FASTM stores the values which
were modified in the transaction to the first level cache, while
other values are kept in higher levels of memory hierarchy.
This approach allows large transactions to recover from aborts
very fast.

To improve the performance of parallel executions, Yoo et
al.[11] have proposed a method which applies the concept



TABLE V
AVERAGE NUMBER OF STALLS IN TRANSACTIONS

Barnes Raytrace Cholesky
(T) 2027 10938 21845
(P1,1) 2074 10820 21491
(P1,10) 2079 10777 21571
(P1,100) 2024 10628 21374
(P1,1000) 2224 10464 21283

of adaptive transaction scheduling (ATS) to LogTM. ATS
can increase the performance of workloads, which lack for
parallelism bacause of frequent contentions, by dynamically
dispatching transactions and controlling the number of con-
current transactions using runtime feedbacks.

Titos et al.[12] have proposed a novel conflict resolution
method. This is a hybrid method of the pessimistic approach
which detects and resolves conflicts as soon as possible and
the optimistic approach which detects and resolves conflicts
when the transaction is committed.

VII. CONCLUSIONS

This paper proposed two criteria for selecting which trans-
action should be aborted in LogTM. The one considers the log
data size of each transaction, and the other considers both the
log data size and the conflict chains.

Through an evaluation with three SPLASH-2 benchmark
programs, it is found that the new LogTM models with the
proposed criteria improve the performance 2.7% in maximum.

Our future work is developping an algorithm of how to de-
cide two weights wC and wD for P (tr) criterion appropriately
and dynamically. The appropriate values for these weights
should be different between programs. Hence, these weights
should be defined dynamically by profiling the performance
and some characteristics of running programs.

REFERENCES

[1] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A.
Wood, “LogTM: Log-based Transactional Memory,” in Proc. of 12th
International Symposium on High-Performance Computer Architecture.
IEEE Computer Society, Feb. 2006, pp. 254–265.

[2] M. Herlihy and J. E. B. Moss, “Transactional Memory: Architectural
Support for Lock-Free Data Structures,” in Proc. of 20th Annual
International Symposium on Computer Architecture. ACM, May. 1993,
pp. 289–300.

[3] P. Sweazey and A. J. Smith, “A Class of Compatible Cache Consistency
Protocols and their Support by the IEEE Futurebus,” in Proc. of 13th
Annual Int’l. Symp. on Computer Architecture (ISCA’86), 1986, pp. 414–
423.

[4] L. M. Censier and P. Feautrier, “A New Solution to Coherence Problems
in Multicache Systems,” IEEE Transactions on Computers, vol. c-27,
no. 12, pp. 1112–1118, Dec. 1978.

[5] R. Rajwar and J. R. Goodman, “Transactional Lock-Free Execution of
Lock-Based Programs,” in Proc of 10th Symposium on Architectural
Support for Programming Languages and Operating Systems. ACM,
Oct. 2002, pp. 5–17.

[6] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hållberg,
J. Högberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A Full
System Simulation Platform,” Computer, vol. 35, no. 2, pp. 50–58, Feb.
2002.

[7] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E.Moore, M. D. Hill, and D. A. Wood., “Multifacet’s
General Execution-driven Multiprocessor Simulator (GEMS) Toolset,”
AMC SIGARCH Computer Architecture News, vol. 33, no. 4, pp. 92–
99, Sep. 2005.

[8] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 Programs: Characterization and Methodological Consider-
ations,” in Proc of 22nd Annual Int’l. Symp. on Computer Architecture
(ISCA’95), 1995, pp. 24–36.

[9] A. R. Alameldeen and D. A. Wood, “Variability in Architectural
Simulations of Multi-Threaded Workloads,” in Proc. of 9th Int’l Symp.
on High-Performance Computer Architecture (HPCA’03), Feb. 2003, pp.
7–18.

[10] M. Lupon, G. Magklis, and A. González, “FASTM: A Log-based
Hardware Transactional Memory with Fast Abort Recovery,” in Proc. of
18th Intl. Conf. on Parallel Architectures and Compilation Techniques
(PACT’09), Sep. 2009, pp. 293–302.

[11] R. M. Yoo and H.-H. S. Lee, “Adaptive Transaction Scheduling for
Transactional Memory Systems,” in Proc. of 20th Annual Symp. on
Parallelism in Algorithms and Architectures (SPAA’08), Jun. 2008, pp.
169–178.

[12] R. Titos, M. E. Acacio, and J. M. Garcı́a, “Speculation-based conflict
resolution in hardware transactional memory,” in Proc. Int’l. Symp. on
Parallel Distributed Processing (IPDPS 2009), May. 2009, pp. 1–12.




