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1. INTRODUCTION 

1.1 Research Background 

PEER-TO-PEER (P2P) networks have received tremendous interest in 

recent years among both Internet users and computer networking professionals. 

Peer-to-peer computing or networking is a distributed application architecture 

that partitions the tasks or workloads among peers. Peers are equally privileged, 

equipotent participants in the application. They are said to form a Peer-to-peer 

network of nodes. Peer-to-peer technology has become very popular for various 

applications such as file sharing or live streaming. Today, a large fraction of the 

internet traffic is due to peer-to-peer applications.  

Chord protocol has been suggested as a mandatory underlying overlay 

technology [1]. In this overlay, each peer maintains a finger table that stores a 

few successors’ connections.  Chord routes the message by sending/forwarding 

messages to the next successor, step by step, until the destination. However, as a 

protocol originally designed for background downloading applications, Chord 

owns several disadvantages. Firstly, Chord lookup protocol is based on clockwise 

lookup. It causes high delay when communicating with peers that are in the 

anti-clockwise direction. Secondly, Chord uses consistent hashing (e.g. SHA-1, 

etc) to partition a keyspace so that each peer is responsible for roughly the same 
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load of resources. However, physically close peers might be assigned with 

different IDs that are far away from each other in the overlay, and therefore 

causes longer latency when connected. Thirdly, Chord is implemented in either 

iterative or recursive style. However, recursive routing might increase the hop 

number; and iterative routing might be not efficient in traversing NAT . Fourth, 

Chord lacks of cache mechanism to preserve the useful information for future 

session establishment. A few attempts have been made to solve the weakness of 

Chord in P2P communication systems. [2, 3] propose a system model that 

physically close peers in the overlay are assigned with close peer IDs because 

most frequently communicated peers  are those who are geometry related each 

other. 

In this paper, we study several approaches that could further reduce the 

communication delay in P2P communication systems. After that, we evaluate 

these approaches based on the comparison in the aspects: number of hops, and 

message flow; we get the conclusion that the proposed improved Bi-Chord 

approach might be a better way for P2P communication systems.  

 

1.2 Research Objective 

 

Main objective of this research is to reduce the response time taken for the 

lookup service to find the node in the peer-to-peer system. Evaluate the results 

with the existing protocol in terms of response time, memory and message flow. 
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1.3 Organization 

 

This thesis is organized as follows. Chapter 2 presents the background of 

this research, which introduces distributed hash table and about the problems that 

can occur in the configuration of chord polices. 

In chapter 3 introduce the related works of this research. We have did an 

extensive literature survey regarding the configuration of chord and has been 

presented in this chapter. 

Chapter 4 shows the experimental evaluation of the system with the other 

methods.. It also explains about the difference between the chord and bi-chord. 

Chapter 5 concludes some possible future directions for this work. 
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2.BACKGROUND 

Distributed hash tables are a class of decentralized distributed systems that 

provide a lookup service similar to hash table. Key, Value pairs are stored in DHT, 

and any participating node can sufficiently retrieve the value associated with a 

given key. Responsibility for maintaining the mapping from keys to values is 

distributed among the nodes, in such a way that a change in the set of participants 

causes a minimal amount of disruption. This allows DHTs to scale to extremely 

large numbers of and to handle continual node arrivals, departures and failures.  

Chord was proposed in 2001 by Ion Stoica, Robert Morris, David Karger, 

Frans Kaashoek, and Hari Balakrishnan, and was developed at MIT. Chord is a 

protocol and algorithm for a peer-to-peer distributed hash table. Chord specifies 

how keys are assigned to nodes, and how a node can discover the value for a 

given key by first locating the node responsible for the key. 

  

2.1 Overlay network 

An overlay network is a computer network which is built on the top of 

another network. Nodes in the overlay can be thought of as being connected by 

virtual or logical links, each of which corresponds to a path, perhaps through 

many physical links, in the underlying network. For example, distributed systems 

such as cloud computing, peer-to-peer networks, and client-server applications 
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are overlay networks because their nodes run on top of the Internet. Overlay 

networks have also been proposed as a way to improve Internet routing, such as 

through quality of service guarantees to achieve higher-quality streaming media. 

an overlay network can be incrementally deployed on end-hosts running the 

overlay protocol software, without cooperation from ISPs.  The overlay has no 

control over how packets are routed in the underlying network between two 

overlay nodes, but it can control, for example, the sequence of overlay nodes a 

message traverses before reaching its destination. 

 

 

 

The peer-to-peer overlay network consists of all the participating peers as 

network nodes. There are links between any two nodes that know each other. If a 

participating peer knows the location of another peer in the peer-to-peer network, 

then there is a directed edge from the former node to the latter in the overlay 

Fig 2.1 Overlay network 
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network. Based on how the nodes in the overlay network are linked to each other, 

we can classify the peer-to-peer networks as unstructured or structured.  

 

2.1.1 Structured System 

 Structured P2P networks employ a globally consistent protocol to ensure 

that any node can efficiently route a search to some peer that has the desired file, 

even if the file is extremely rare. Such a guarantee necessitates a more structured 

pattern of overlay links. By far the most common type of structured P2P network 

is the distributed hash table (DHT), in which a variant of consistent hashing is 

used to assign ownership of each file to a particular peer, in a way analogous to a 

traditional hash tables assignment of each key to particular array slot. 

 

2.1.2 Unstructured systems 

 An unstructured P2P network is formed when the overlay links are 

established arbitrarily. Such networks can be easily constructed as a new peer that 

wants to join the network can copy existing links of another node and then form 

its own links over time. In an unstructured P2P network, if a peer wants to find a 

desired piece of data in the network, the query has to be flooded through the 

network to find as many peers as possible that share the data. 

R 
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2.2 Distributed Hash Table 

A distributed hash table (DHT) is a reliable, scalable, wide area data 

storage system that frees programmers from many of the complications of 

building a distributed system [4]. DHTs store blocks of data on hundreds or 

thousands of machines connected to the Internet, replicate the data for reliability, 

and quickly locate data despite running over high latency, wide area links. 

 The DHT addresses problems of locating data and replicating it for 

reliability, which are common to many distributed systems, without additional 

work by the application. The DHT provides a generic interface, which makes it 

easy for a wide variety of applications to adopt DHTs as a storage substrate: put 

stores data in the system under a key; get retrieves the data. Distributed hash 

tables fill a gap in the design space of storage systems. DHTs occupy a middle 

ground between small systems with strong guarantees on the service they provide 

(such as distributed file systems) and large unorganized, best effort systems (such 

as the world wide web or file sharing systems). DHTs are able to operate over a 

large and previously unoccupied area of the design space; the existence of a 

single, practical system that operates throughout this regime will make it easier to 

write new distributed applications. In filling this design space gap, DHTs attempt 

to combine the two strands of systems research that inspired DHTs and provide 

the best features of both. Inspired by small, LAN­based systems (which we will 

call transparent distributed systems), DHTs provide probabilistic guarantees on 
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the success of a get or put operation. At the same time DHTs can operate on the 

same scales as large systems designed to run on the wide area.  

 

Functions of DHT: 

1. put(key, value) 

2. get(key) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3 DHT properties 

DHTs characteristically emphasize the following properties: 

1. Decentralization 

2. Fault tolerance 

3. Scalability 

 

 

 

  Network 

   

   Put(key,value) 

     Get(key) 

Fig 2.2 Functions of DHT 
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2.4 Chord 

 

2.4.1 Overview 

 

Chord provides fast distributed computation of a hash function mapping 

keys to nodes responsible for them. Chord assigns keys to nodes with consistent 

hashing [4], which has several desirable properties. With high probability the 

hash function balances load (all node receive roughly the same number of keys). 

Also with high probability, when an Nth node joins or leaves the network, only a 

O(1/N) fraction of the keys are moved to a different location this is clearly the 

minimum necessary to maintain a balanced load. Chord improves the scalability 

of consistent hashing by avoiding the requirement that every node know about 

every other node. A Chord node needs only a small amount of “routing” 

information about other nodes. Because this information is distributed, a node 

resolves the hash function by communicating with other nodes. In an N-node 

network, each node maintains information about only O(log N) other nodes, and 

a lookup requires O(log N) messages. 
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2.4.2 Consistent Hashing 

The consistent hash function assigns node and key an m-bit identifier using 

SHA-1 [5] as a base hash function. A node’s identifier is chosen by hashing the 

node’s IP address, while a key identifier is produced by hashing the key. We will 

use the term “key” to refer to both the original key and its image under the hash 

function, as the meaning will be clear from context. Similarly, the term “node” 

will refer to both the node and its identifier under the hash function. The 

identifier length m must be large enough to make the probability of two nodes or 

keys hashing to the same identifier negligible. Consistent hashing assigns keys to 

nodes as follows. Identifiers are ordered on an identifier circle modulo 2
m
. Key k 

is assigned to the first node whose identifier is equal to or follows (the identifier 

of ) k in the identifier space. This node is called the successor node of key k, 

           Fig 2.3 Overlay network with Chord ring 
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denoted by successor(k). If identifiers are represented as a circle of numbers from 

0 to 2
m -1

, then successor(k) is the first node clockwise from k. In the remainder 

of this paper, we will also refer to the identifier circle as the Chord ring. 

 

Consistent hashing is designed to let nodes enter and leave the network 

with minimal disruption. To maintain the consistent hashing mapping when a 

node n joins the network, certain keys previously assigned to n’s successor now 

become assigned to n. When node n leaves the network, all of its assigned keys 

are reassigned to n’s successor. No other changes in assignment of keys to nodes 

need occur. 

 

2.4.3 Simple key location 

 

Lookups could be implemented on a Chord ring with little per-node state. 

Each node need only know how to contact its current successor node on the 

identifier circle. Queries for a given identifier could be passed around the circle 

via these successor pointers until they encounter a pair of nodes that straddle the 

desired identifier; the second in the pair is the node the query maps to. 
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2.4.4 Scalable Key location 

Let m be the number of bits in the key/node identifiers. Each node n 

maintains a routing table with up tomentries (we will see that in fact only O(log 

n) are distinct), called the finger table. The ith entry in the table at node n 

contains the identity of the first node s that succeeds n by at least 2
i-1 

on the 

identifier circle, i.e., s = successor(n+2
i+1

), where 1 ≤ i ≤ m (and all arithmetic is 

modulo 2m). We call node s the i
th

 finger of node n, and denote it by n.finger[i] 

(see Table 2.1). A finger table entry includes both the Chord identifier and the IP 

address (and port number) of the relevant node. Note that the first finger of n is 

the immediate successor of n on the circle; for convenience we often refer to the 

first finger as the successor. 

 

 

  

Notation  Definition 

Finger[k] First node on circle (n+2
k-1

)mod 2
m
,1≤k≤m 

Successor The next node on the identifier circle 

Predecessor The previous node on the identifier circle 

 

2.4.5 Address the problems 

Chord simplifies the design of peer-to-peer systems and applications based 

on it by addressing these difficult problems: 

Table 2.1 Notation 
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1.Load balance: Chord acts as a distributed hash function, spreading 

keys evenly over the nodes; this provides a degree of natural load balance. 

2.Decentralization: Chord is fully distributed: no node is more 

important than any other. This improves robustness and makes Chord appropriate 

for loosely-organized peer-to-peer applications. 

3.Scalability: The cost of a Chord lookup grows as the log of the number 

of nodes, so even very large systems are feasible. No parameter tuning is required 

to achieve this scaling. 

4.Availability: Chord automatically adjusts its internal tables to reflect 

newly joined nodes as well as node failures, ensuring that, barring major failures 

in the underlying network, the node responsible for a key can always be found. 

This is true even if the system is in a continuous state of change. 

5.Flexible naming: Chord places no constraints on the structure of the 

keys it looks up: the Chord key-space is flat. This gives applications a large 

amount of flexibility in how they map their own names to Chord keys. 

 

2.5 Chord Overlay 

In Chord overlay, peers and resources construct a ring, as shown in Figure 

2.4. In the ring, peers and resources are represented by an integer Node 

ID/Resource ID. Each peer stores a certain amount of <id, value> pairs, in which 
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id is the peer/resource ID, value is the peer address information or the data 

storage. Peer/resource ID is assigned by consistent hashing [6], e.g. SHA-1 

algorithm. For instance, the peer ID can be produced by hashing the IP address of 

the particular peer; and the resource ID can be generated by hashing the data 

value. The Resource ID is stored in the first peer, whose ID>= Resource ID (see 

Figure 2.4). 

Each peer contains a routing table, called Finger table, for storing the 

routing information records. The Finger table records ㏒N successors where N is 

the number of peers in the overlay (see Figure 2.4). Suppose the space size of 

overlay is 2
m
, for some integer m and the i-th successor ID of a peer with ID P is: 

  

Succid(i) =(P +2
i-1

)mod2
m
 (0 <i ≤m) 

 

Each peer contacts periodically its successors for updating the Finger 

table. It also contacts the predecessor that is the previous peer in the identifier 

circle. This is useful when a peer leaves the ring and asks the previous peer to 

update its Finger table. Chord routes the message by sending messages to the 

next successor that is nearest to the destination identifier. The total cost is no 

more than ㏒N hops and .log N in average where N is the number of peers in the 

overlay [7].  
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Chord also defines the advertisement function about joining/leaving 

procedure for peers. The advertisement function would tell the corresponding 

successor and predecessor to update their finger table. 
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Table 2.2 :Finger Table 

Fig 2.4 : Chord ring 

 



 16 

 

 

2.4.1 Successor function 

Since each node maintains information about only a small subset of the nodes 

in the system, evaluating the successor function requires communication between 

nodes at each step of the protocol. The search for a node moves progressively 

closer to identifying the successor with each step. A search for the successor of  

f  initiated at node r begins by determining if  f  is between r and the 

immediate successor of r. If so, the search terminates and the successor of r is 

returned. Otherwise, r forwards the search request to the largest node in its finger 

table that precedes f;  call this node s . The same procedure is repeated by s until 

the search terminates.  

 

Pseudocode to find the successor 

// ask node n to find the successor of id 

n.find successor(id) 

if (id ϵ (n, successor]) 
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13 

Fig 2.5: Direct connection 
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return successor; 

else 

// forward the query around the circle 

return successor:find successor(id); 

 

 

 

 

The algorithm is outlined above in recursive form: if a search request 

requires multiple steps to complete, the step is initiated by the (n-1)
th
 behalf of the 

initiator. The successor function may also be implemented iteratively. In an 

iterative implementation, the initiating node is responsible for making requests 

for finger table information at each stage of the protocol. Both implementation 

styles offer advantages: an iterative approach is easier to implement and relies 

less on intermediary nodes, while the recursive approach lends itself more 

naturally to caching and server selection. 
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13 

Fig 2.6: Message flow 
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2.4.2 Node join 

 In order to ensure that lookups execute correctly as the set of participating 

nodes changes, Chord must ensure that each node’s successor pointer is up to 

date. It does this using a “stabilization” protocol that each node runs periodically 

in the background and which updates Chord’s finger tables and successor 

pointers. Figure 6 shows the pseudocode for joins and stabilization. When node n 

first starts, it calls n.join(n0), where n0 is any  known Chord node, or n.create() 

to create a new Chord network. The join() function asks n0 to find the immediate 

successor of n. By itself, join() does not make the rest of the network aware of n. 

Every node runs stabilize() periodically to learn about newly joined nodes. Each 

time node n runs stabilize(), it asks its successor for the successor’s predecessor p, 

and decides whether p should be n’s successor instead. This would be the case if 

node p recently joined the system. In addition, stabilize() notifies node n’s 

successor of n’s existence, giving the successor the chance to change its 

predecessor to n. The successor does this only if it knows of no closer 

predecessor than n. 

 

create a new Chord ring.  

n.create() 

predecessor = nil; 

successor = n; 
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join a Chord ring containing node p. 

n.join(n’) 

predecessor = nil; 

successor = p .find successor(n); 

 

called periodically. verifies p’s immediate 

successor, and tells the successor about n. 

n.stabilize() 

x = successor.predecessor; 

if (x ϵ (n. successor)) 

successor = x; 

successor.notify(n); 

 

p thinks it might be our predecessor. 

n.notify(p) 

if (predecessor is nil or p ϵ (predecessor. n)) 

predecessor = p; 

 

 

called periodically. refreshes finger table entries. 

next stores the index of the next finger to fix. 

n.fix_fnngers() 

next = next + 1; 

if (next > m) 

next = 1; 

finger[next] = find successor(n + 2
next-1

 ); 

 

called periodically. checks whether predecessor has failed. 

n.check predecessor() 

if (predecessor has failed) 

predecessor = nil; 
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Each node periodically calls fix fingers to make sure its finger table 

entries are correct; this is how new nodes initialize their finger tables, and it is 

how existing nodes incorporate new nodes into their finger tables. Each node also 

runs check predecessor periodically, to clear the node’s predecessor pointer if 

n.predecessor has failed; this allows it to accept a new predecessor in notify.  

As a simple example, suppose node n joins the system, and its ID lies 

between nodes np and ns. In its call to join(), n acquires ns as its successor. Node 

ns, when notified by n, acquires n as its predecessor. When np next runs stabilize(), 

it asks ns for its predecessor (which is now n); np then acquires n as its successor. 

Finally, np notifies n, and n acquires np as its predecessor. At this point, all 

predecessor and successor pointers are correct. At each step in the process, ns is 

reachable from np using successor pointers; this means that lookups concurrent 

with the join are not disrupted. Figure 7 illustrates the join procedure, when n’s 

ID is 26, and the IDs of ns and np are 21 and 32, respectively. As soon as the 

successor pointers are correct, calls to find successor() will reflect the new node. 

Newly-joined nodes that are not yet reflected in other nodes’ finger tables may 

cause find successor() to initially undershoot, but the loop in the lookup 

algorithm will nevertheless follow successor (finger[1]) pointers through the 

newly-joined nodes until the correct predecessor is reached. Eventually fix 
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fingers() will adjust finger table entries, eliminating the need for these linear 

scans. 

 

One simple solution is to use two directional lookup mechanism in the 

search of peer/resource, called Bi-Chord [8]. In this solution, suppose the overlay 

space is 2
m
, each peer stores m successor and (m–1) predecessor records in its 

Finger table. The request is sent/forwarded to one of the successors/predecessors 

that is clockwisely closest to the target and then forwarded step-by-step until the 

destination is reached.  

Suppose the space size of overlay is 2
m
, for some integer m and the i-th 

predecessor ID of a peer with ID P is: 

 Precid(i) =(i +n-2
i-1

)mod2
m
 (0 <i ≤m-1) 

 

Table 2.3 Predecessor list for node 3 

 

I Predecessor 

0 2 

1 1 

2 14 

 

Figure 5 depicts the Bi-chord with successor and predecessors. Solid line 

represents the connection to the successor where as the dotted line represents the 

connection with the predecessor. Figure 5 shows the connections of a peer with 

identifier 5. It holds four connections with its successors (peer 6, peer 7, peer 9, 
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and peer 13) and three connections with its predecessors (peer 1,peer 3 and peer 

4). 

  

 

 

 

For searching a peer, for instance peer 2, peer 5 firstly send the request to 

the peer 1; peer 1 , after using its own finger table, forwards the request to the 

destination peer 2, as represented in Figure 6. This approach reuses most of the 

Chord lookup algorithm and routing style. According to the algorithm in section 

2, it takes (log(N)-1) / 2 in average before the message reaches the destination, 

where N is the number of peers in the overlay. 

This approach reuses the most of the Chord lookup algorithm and routing 

style. According to the algorithm it takes [log (N-1)]/2 in average before the 

message reaches the destination, where N is the number of peers in the overlay. 
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Fig 2.7: Bi-chord 
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2.4.3 Path Length 

Chord’s performance depends in part on the number of nodes that must be 

visited to resolve a query. Path length is O(logN), where N is the total number of 

nodes in the network. Each node in an experiment picked a random set of keys to 

query from the system, and we measured each query’s path length. 

Consider a node making a query for a randomly chosen key. Represent 

the distance in identifier space between node and key in binary. The most 

significant (say i
th
) bit of this distance can be corrected to 0 by following the 

node’s i
th

 finger. If the next significant bit of the distance is 1, it too needs to be 

corrected by following a finger, but if it is 0, then no i -1
st
 finger is 

followed—instead, we move on the the i-2
nd

 bit. In general, the number of fingers 
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Fig 2.8: Message forwarding in Bi-chord 
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we need to follow will be the number of ones in the binary representation of the 

distance from node to query. 

 

 

  

 

 

 

 

 

 

 

 

 

Chord O log(N) 

Bi-Chord log(N-1)/2 

      Table 2.4 Path length 
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3. APPROACH 

  In this chapter the proposed complex bi-chord lookup method is explained with 

routing style of chord with some modifications and compare message flow and 

response time with the existing algorithm.  

 

3.1 Complex and efficient Bi-Chord 

This algorithm may be implemented to further enhance Bi-Chord efficiency. 

In this approach, each peer maintains the same finger table as Bi-Chord (Figure 

8). The major difference is that each peer transmits the P2P request to one of its 

successors/predecessors that is as close as possible to the destination, independent 

of the clockwise or anti-clockwise direction. Each peer chooses either its 

successor or predecessor for routing messages, on the distance basis. 

Suppose peer A wishes to initiate/forward a P2P message to the destination B, it 

chooses the shorter distance of 

(a) One of its predecessors closest to peer B. 

(b) One of its successors closest to peer B. 

(c) If these two choices have equal path lengths, the message will follow 

the rule b. 
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Figure 3.1 shows an example of the proposed lookup initiated from peer 3 

and ended in peer 12.The message is firstly routed to peer 10 (peer 3’s successor), 

then to peer 13 (successor of peer 10), and finally to peer 12 (predecessor of 13). 

The average path length of this method is 

log(N) / 2- log(N / 2π) +1 

 

 

 

3.2. Cache Entry Record 

 

We can also use a cache entry record approach to improve performance 

indirectly. The concept is as following: P2P peer in the overlay maintains a cache 

that records the communication history details (see Table 3.1), including the 

previous communicated peer identifier, the corresponding public IP address, port, 

etc. For searching the destination peer, source peer first check its cache entry 
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Fig 3.1 Lookup in proposed method 
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record. If the destination peer (peer identifier, public IP address, port, etc) is in 

the table, the session might be established directly. Otherwise, the source peer 

will execute the lookup algorithm described above. 

 In the stable overlay where peers do not change the identifier and the 

public endpoints frequently, the cost is only one hop. However, in the unstable 

overlay where peers change their identifier/IP frequently, this might even cost 

worse delay. It takes at most ( log N +1) hops (e.g. Bi-Chord lookup) before 

reaching the destination. 

 

 

 

 

id == 3 Identifier Public endpoint: port 

1 A 215.239.168.1:1980 

2 B 159.250.16.2 :2000 

. 

. 

. 

. 

. 

. 

N S 128.39.169.2 : 9000 

 

 

3.3 Impact of Node Joins on Lookups 

 

In this section, we consider the impact of node joins on lookups. We 

first consider correctness. If joining nodes affect some region of the Chord ring, 

Table 3.1 Cache entry record 
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a lookup that occurs before stabilization has finished can exhibit one of three 

behaviors.  

The common case is that all the finger table entries involved in the 

lookup are reasonably current, and the lookup finds the correct successor in 

O(logN) steps. The second case is where successor pointers are correct, but 

fingers are inaccurate. This yields correct lookups, but they may be slower.  In 

the final case, the nodes in the affected region have incorrect successor pointers, 

or keys may not yet have migrated to newly joined nodes, and the lookup may 

fail.  

The higher-layer software using Chord will notice that the desired data 

was not found, and has the option of retrying the lookup after a pause. This pause 

can be short, since stabilization fixes successor pointers quickly. Now let us 

consider performance. Once stabilization has completed, the new nodes will 

have no effect beyond increasing the N in the O(logN) lookup time. If 

stabilization has not yet completed, existing nodes’ finger table entries may not 

reflect the new nodes. The ability of finger entries to carry queries long 

distances around the identifier ring does not depend on exactly which nodes the 

entries point to; the distance halving argument depends only on ID-space 

distance. Thus the fact that finger table entries may not reflect new nodes does 

not significantly affect lookup speed. The main way in which newly joined 

nodes can influence lookup speed is if the new nodes’ IDs are between the 
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target’s predecessor and the target. In that case the lookup will have to be 

forwarded through the intervening nodes, one at  a time. But unless a 

tremendous number of nodes joins the system, the number of nodes between two 

old nodes is likely to be very small, so the impact on lookup is negligible. 

Formally, we can state the following result. We call a Chord ring stable if all 

its successor and finger pointers are correct. 

 

Theorem :  If we take a stable network with N nodes with correct 

finger pointers, and another set of up toN nodes joins the network, and all 

successor pointers (but perhaps not all finger pointers) are correct, then lookups 

will still take O(logN) time with high probability.  

Proof   : The original set of fingers will, in O(logN) time, bring the 

query to the old predecessor of the correct node. With high probability, at most 

O(logN) new nodes will land between any two old nodes. So only O(logN) new 

nodes will need to be traversed along successor pointers to get from the old 

predecessor to the new predecessor. More generally, as long as the time it takes 

to adjust fingers is less than the time it takes the network to double in size, 

lookups will continue to take O(logN) hops. We can achieve such adjustment by 

repeatedly carrying out lookups to update our fingers. It follows that lookups 

perform well so long as (log2 N) rounds of stabilization happen between any N 

node joins.  
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3.4 Failure and Replication 

The correctness of the Chord protocol relies on the fact that each node 

knows its successor. However, this invariant can be compromised if nodes fail. 

For example, in Figure 4, if nodes 14, 21, and 32 fail simultaneously, node 8 will 

not know that node 38 is now its successor, since it has no finger pointing to 38. 

An incorrect successor will lead to incorrect lookups. Consider a query for key 30 

initiated by node 8. Node 8 will return node 42, the first node it knows about 

from its finger table, instead of the correct successor, node 38. To increase 

robustness, each Chord node maintains a successor list of size r, containing the 

node’s first r successors. If a node’s immediate successor does not respond, the 

node can substitute the second entry in its successor list. All r successors would 

have to simultaneously fail in order to disrupt the Chord ring, an event that can be 

made very improbable with modest values of r. Assuming each node fails 

independently with probability p, the probability that all r successors fail 

simultaneously is only pr. Increasing r makes the system more robust. Handling 

the successor list requires minor changes in the pseudocode in Figures 5 and 6. A 

modified version of the stabilize procedure in Figure 6 maintains the successor 

list. Successor lists are stabilized as follows: node n reconciles its list with its 

successor s by copying s’s successor list, removing its last entry, and prepending 

s to it. If node n notices that its successor has failed, it replaces it with the first 
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live entry in its successor list and reconciles its successor list with its new 

successor. At that point, n can direct ordinary lookups for keys for which the 

failed node was the successor to the new successor. As time passes, fix fingers 

and stabilize will correct finger table entries and successor list entries pointing to 

the failed node. A modified version of the closest preceding node procedure in 

Figure 5 searches not only the finger table but also the successor list.  
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4.EVALUATION 

In this chapter the modeling of the complex and efficient bi-chord is done.  

The results are compared with existing algorithms. 

 

4.1 Lookup  

 The results are obtained for each node in the network and tried for 

all the combination of keys. For example if the network sine is N then the search 

is done for N-1 time for each and every node. Response time is the average of the 

search results time. Fig 4.1 shows the search results done for the three approaches. 

Based on the Chord lookup protocol described in Chapter 2, the average 

complexity of Chord lookup algorithm is .log(N / S). Bi-Chord provides fairness 

in bi-directional peer/resource lookup.  

 

Thus, the complexity is .log(N / S). Proposed method further improves the 

lookup efficiency. According to the revision from previous research (in Chapter 

3), the average complexity is: log(N / S) / 2 - log(N / 2pS) +1. We compare three 

lookup algorithms by setting different S value (e.g. we set S = 8 and S = 16 for 

example), as represented in Figure 15. X axis represents the peer number in the 

overlay and Y axis represents the number of hops in average. We get the 

information that firstly, Bi-Chord and proposed lookup algorithms are much more 
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efficient than the original Chord lookup; secondly, the higher value of S, the 

smaller number of hops; thirdly, proposed approach provides better result than 

Bi-Chord.    

 

 

  

No.of.Peers Chord Bi-chord Proposed Method 

16 0 0 0 

32 0.0000375 0.0000375 0 

64 0.0005391 0.0005984 0 

128 0.000625 0.000625 0.000313 

256 0.0030469 0.0012109 0.000703 

512 0.0095313 0.0062695 0.005723 

1024 0.0349414 0.0223633 0.018457 

2048 0.210249 0.1986768 0.17063 
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Table 4.1 Response time for the lookup method 

 

 

Fig 4.1(b) Experimental results 
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The graph explicitly shows that the response time for a lookup service in 

chord is long. Bi-chord gives better results compared to Bi-chord ie the response 

time is less than the chord. As expected the proposed complex and efficient 

method gives better results. i.e the response time for the lookup service is 

comparatively less compared to the existing one. For the number of peers 16, 

three methods give the same result. The response time is near to zero, it is very 

less. From the size 32, the proposed method give better results, the graph is 

linearly increased according to size. The proposed method utilizes the time 

efficiently. Figure 4.2 shows the result for maximum number of peers used in the 

network. According to figure 4.2, if the network size is increased the response 

time also will increase, but the proposed method give comparatively good result. 
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Fig 4.1(b) Experimental results 
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4.2 Message flow 

 For the chord it will take Olog(N) message flow. If the node receive the 

request it will forward the request to the closest successor if the node did not find 

the successor in the finger table of the node. Message forwarding continues until 

the destination is found. For a node, it will take maximum m-1 message flow. 

Path length for chord Olog N is proved from the result. Fig 4.3 shows the 

evaluation of message flow. The x-axis denotes the number of bits used for the id 

whereas y-axis denotes the message flow in average. 

0

1

2

3

4

5

6

4 5 6 7 8 9 10 11 12 13

Chord

Bi-chord

Proposed

 

 

Figure 4.2.b show the message flow result in the worst case, ie the path 

length of the lookup service is long. According to the graph, proposed method 

worst case message flow is less in average. 

 

 

Fig 4.2 Message flow 
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4.3 Maintenance cost 
  

Chord algorithm maintenance cost is less because it has only m successor 

list of finger table, so it is easy to maintain the chord algorithm with minimal cost. 

Algorithm checks the first and last entry of the finger table at the beginning. If 

the key is smaller than the first entry then it will give first key as the result. 

Whereas the key is bigger than the last entry then it provides the last key as a 

result. Otherwise it will check the each entry of the finger table, when it found the 

closest preceding node it will stop the lookup service. This lookup is easy to 

implement and maintain.  

In Bi-chord each node keeps the finger table with m successors and m-1 

predecessor. Searching a key involves the both successor and predecessor entries. 

When a node leaves the network the node have to update the finger table entries. 

Fig 4.3 Worst case Message flow 
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Bi-chord also verify that whether predecessor or successor list have the closest 

preceding node, it will take more cost to maintain the finger table as well as the 

lookup service.  

 In the proposed method, the algorithm have to calculate the distance with 

both successor and predecessor. Moreover it have to check whether the distance 

is fell under 2
m
 and if there are more than one distance fall under the 2

m
 then it 

have to find the minimum distance to proceed further. If the node whose distance 

fall under 2
m
 does not contain the key values then the lookup service select 

second minimum distance and it will continue the lookup until found the 

destination. Total cost of the this method is comparatively bigger than the 

bi-chord approach.   
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Fig 4.4 Maintenance cost 
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5. CONCLUSION 

 The proposed algorithm works well for the overlay network peer to peer 

applications. . The lookup in this method is very east to find the peer in the 

network. However it follows the routing style of chord algorithm it will take less 

time to search the node with maximum memory utilization. It can solve any 

queries to find the node. But it will take more memory compared to existing 

algorithm. If there is alternative for the optimized memory usage to reduce the 

memory capacity, this method will be the best lookup service to find the peer in 

the network. 
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